

Welcome to py4web’s documentation!

Contents:

	What is py4web?

	Installation and Startup
	Supported platforms and prerequisites

	Setup procedures

	Upgrading

	First run

	Command line options

	Deployment on the cloud

	Creating your first app
	From scratch

	Static web pages

	Dynamic Web Pages

	From _scaffold

	App Watchdog

	Dashboard

	Fixtures
	Important about Fixtures

	Templates

	Sessions

	Translator

	The Flash fixture

	The DAL fixture

	Caveats about Fixtures

	Custom fixtures

	Auth and Auth.user

	Caching and Memoize

	Convenience Decorators

	The database abstraction layer (DAL)
	Dependencies

	The DAL: A quick tour

	Using the DAL “stand-alone”

	DAL constructor

	Table constructor

	Field constructor

	Migrations

	insert

	commit and rollback

	Raw SQL

	drop

	Indexes

	Legacy databases and keyed tables

	Distributed transaction

	More on uploads

	Query, Set, Rows

	select

	Other methods

	Computed fields

	Virtual fields

	One to many relation

	Many to many

	Tagging records

	list:<type> and contains

	Other operators

	Generating raw sql

	Exporting and importing data

	Caching selects

	Self-Reference and aliases

	Advanced features

	Gotchas

	The RESTAPI
	RestAPI GET

	YATL Template Language
	Basic syntax

	YATL helpers
	XML

	Built-in helpers

	Custom helpers

	BEAUTIFY

	Server-side DOM and parsing

	Page layout

	Functions in views

	Blocks in views

	Internationalization
	Pluralize

	Update the translation files

	Forms
	Example

	Form validation

	Authentication and Access control
	Auth UI

	Using Auth

	Auth Plugins

	Tags and Permissions

	Grid
	Key Features

	Basic Example

	Signature

	Searching / Filtering

	CRUD

	Templates

	Customizing Style

	Custom Action Buttons

	Sample Action Button Class

	Reference Fields

Indices and tables

	Index

	Module Index

	Search Page

What is py4web?

PY4WEB is a web framework for rapid development of efficient database
driven web applications. It is an evolution of the popular web2py
framework but much faster and slicker. Its internal design has been much
simplified compared to web2py.

PY4WEB can be seen as a competitor of other frameworks like Django or
Flask, and it can indeed serve the same purpose. Yet PY4WEB aims to
provide a larger feature set out of the box and reduce the development
time of new apps.

From a historical perspective our story starts in 2007 when web2py was
first released. web2py was designed to provide an all-inclusive solution
for web development: one zip file containing the Python interpreter, the
framework, a web based IDE, and a collection of battle-tested packages
that work well together. In many ways web2py has been immensely
successful. Web2py succeeded in providing a low barrier of entry for new
developers, a very secure development platform, and remains backwards
compatible until today.

Web2py always suffered from one problem: its monolithic design. The most
experienced Python developers did not understand how to use its
components outside of the framework and how to use third party
components within the framework. This was for good reason, as we did not
care too much about them. We thought of web2py as a perfect tool that
did not have to be broken into pieces because that would compromise its
security. It turned out that we were wrong, and playing well with others
is important. Hence, in the last two years we worked on three fronts:

	We ported web2py to Python 3.

	We broke web2py into modules that can be used independently.

	We reassembled some of those modules into a new more modular
framework … PY4WEB.

PY4WEB is more than a repackaging of those modules. It is a complete
redesign. It uses some of the web2py modules, but not all of them. In
some cases, it uses other and better modules. Some functionality was
removed and some was added. We tried to preserve most of the syntax and
features that experienced web2py users loved. Here is a more explicit
list:

	PY4WEB, unlike web2py, requires Python 3.

	PY4WEB, unlike web2py, can be installed using pip and its
dependencies are managed using requirements.txt.

	PY4WEB apps are regular Python modules. This is very different to
web2py. In particular, we ditched the custom importer, and we rely
now exclusively on the regular Python import mechanism.

	PY4WEB, like web2py, can serve multiple applications concurrently, as
long as the apps are submodules of the apps module.

	PY4WEB, unlike web2py, is based on bottlepy and in particular uses
the Bottle request object and the Bottle routing mechanism.

	PY4WEB, unlike web2py, does not create a new environment at every
request. It introduces the concept of fixtures to explicitly declare
which objects need to be re-initialized when a new http request is
processed. This makes it much faster.

	PY4WEB, has a new sesson object which, like web2py’s, provides strong
security and encryption of the session data, but sessions are no
longer stored in the file system - which created performance issues.
It provides sessions in cookies, in redis, in memcache, or in
database. We also limited session data to objects that are json
serializable.

	PY4WEB, like web2py, has a built-in ticketing system but, unlike
web2py, this system is global and not per app. Tickets are no longer
stored in the filesystem with the individual apps. They are stored in
a single database.

	PY4WEB, like web2py, is based on pydal but uses some new features of
pydal (RESTAPI).

	PY4WEB, like web2py, uses the yatl template language but defaults to
square brackets delimiters to avoid conflicts with model JS
frameworks, such as Vue.js and angular.js. Yatl includes a subset of
the web2py helpers.

	PY4WEB, unlike web2py, uses the pluralization library for
internationalization. In practice, this exposes an object T very
similar to web2py’s T but it provides better caching and more
flexible pluralization capabilities.

	PY4WEB comes with a Dashboard APP that replaces web2py’s admin. This
is a web IDE for uploading/managing/editing apps.

	PY4WEB’s Dashboard includes a web based database interface. This
replaces the appadmin functionality of web2py.

	PY4WEB comes with a Form object that is similar to web2py’s SQLFORM
but it is much simpler and faster. The syntax is the same. This has
been provided in order to help users port existing apps; but PY4WEB
encourages using API based forms over postbacks.

	PY4WEB comes with an Auth object that replaces the web2py one. It is
more modular and easier to extend. Out of the box, it provides the
basic functionality of register, login, logout, change password,
request change password, edit profile as well as integration with
PAM, SAML2, LDAP, OAUTH2 (google, facebook, and twitter).

	PY4WEB comes with some utilites like “tags”, for instance, which
allows adding searchable tags to any database table. It can be used,
for example, to tag users with groups and search users by groups and
apply permissions based on membership.

	PY4WEB comes with with some custom Vue.js components designed to
interact with the PyDAL RESTAPI, and with PY4WEB in general. These
APIs are designed to allow the server to set policies about which
operations a client is allowed to perform, but give the client
flexibility within those constraints. The two main components are
mtable (which provides a web based interface to the database similar
to web2py’s grid) and auth (a customizable interface to the Auth
API).

The goal of PY4WEB is and remains the same as web2py’s: to make web
development easy and accessible, while producing applications that are
fast and secure.

Installation and Startup

Supported platforms and prerequisites

PY4WEB runs fine on Windows, MacOS and Linux. Its only prerequisite is
Python 3.6+, which must be installed in advance (except if you use
binaries).

Setup procedures

There are four alternative ways of running py4web, with different level
of difficulty and flexibility. Let’s look at the pros and cons.

Installing from binaries

This is not a real installation, because you just copy a bunch of files
on your system without modifying it anyhow. Hence this is the simplest
solution, especially for newbies or students, because it does not
require Python pre-installed on your system nor administrative rights.
On the other hand, it’s experimental, it could contain an old py4web
release and it is quite difficult to add other functionalities to it.

In order to use it you just need to download the latest Windows or MacOS
ZIP file from this external
repository [https://github.com/nicozanf/py4web-pyinstaller]. Unzip it
on a local folder and open a command line there. Finally run

py4web-start set_password
py4web-start run apps

With this type of installation, remember to always use py4web-start
instead of ‘py4web’ or ‘py4web.py’ in the following documentation.

Hint: use a virtual environment (virtualenv)

A full installation of any complex python application like py4web will
surely modify the python environment of your system. In order to prevent
any unwanted change, it’s a good habit to use a python virtual
environment (also called virtualenv, see
here [https://docs.python.org/3.7/tutorial/venv.html] for an
introduction). This is a standard python feature; if you still don’t
know virtualenv it’s a good time to start its discovery!

Activate it before using any of the following real installation
procedures is highly reccomended.

Installing from pip

Using pip is the standard installation procedure for py4web. From the
command line

python3 -m pip install --upgrade py4web --no-cache-dir --user

but do not type the –user option with virtualenv or a standard
Windows installation which is already per-user.

Also, if python3 does not work, try with the simple python command
instead.

This will install py4web and all its dependencies on the system’s path
only. The assets folder (that contains the py4web’s system apps) will
also be created. After the installation you’ll be able to start py4web
on any given working folder with

py4web setup apps
py4web set_password
py4web run apps

If the command py4web is not accepted, it means it’s not in the system’s
path. On Windows, a special py4web.exe file (pointing to py4web.py) will
be created by pip on the system’s path, but not if you type the
–user option by mistake.

Installing from source (globally)

This is the traditional way for installing a program, but it works only
on Linux and MacOS. All the requirements will be installed on the
system’s path along with links to the py4web.py program on the local
folder

git clone https://github.com/web2py/py4web.git
cd py4web
make assets
make test
make install
py4web run apps

Also notice that when installing in this way the content of
py4web/assets folder is missing at first but it is manually created
later with the ‘make assets’ command.

Installing from source (locally)

In this way all the requirements will be installed or upgraded on the
system’s path, but py4web itself will only be copied

on a local folder. This is especially useful if you already have a
working py4web installation but you want to test a different

one. From the command line, go to a given working folder and then run

git clone https://github.com/web2py/py4web.git
cd py4web
python3 -m pip install --upgrade -r requirements.txt

Once installed, you should always start it from there with

For Linux / MacOS

./py4web.py setup apps
./py4web.py set_password
./py4web.py run apps

If you have installed py4web both globally and locally, notice the
./ ; it forces the run of the local folder’s py4web and not the
globally installed one.

For Windows

python3 py4web.py setup apps
python3 py4web.py set_password
python3 py4web.py run apps

On Windows, the programs on the local folder are always executed before
the ones in the path (hence you don’t need the ./). But running .py
files directly it’s not usual and you’ll need an explicit python3/python
command.

Upgrading

If you installed py4web from pip you can simple upgrade it with

python3 -m pip install --upgrade py4web

Mind that it will not automatically upgrade the apps like Dashboard
and Default. You have to manually remove these apps and then run

py4web setup apps

in order to re-install them. This is a safety precaution, in case you
made changes to those apps.

If you installed py4web in any other way, you must upgrade it manually.
First you have to make a backup of any personal py4web work you’ve done,
then delete the old installation folder and re-install the framework
again.

First run

Running py4web using any of the previous procedure should produce an
output like this

██████╗ ██╗ ██╗██╗ ██╗██╗ ██╗███████╗██████╗
██╔══██╗╚██╗ ██╔╝██║ ██║██║ ██║██╔════╝██╔══██╗
██████╔╝ ╚████╔╝ ███████║██║ █╗ ██║█████╗ ██████╔╝
██╔═══╝ ╚██╔╝ ╚════██║██║███╗██║██╔══╝ ██╔══██╗
██║ ██║ ██║╚███╔███╔╝███████╗██████╔╝
╚═╝ ╚═╝ ╚═╝ ╚══╝╚══╝ ╚══════╝╚═════╝
Dashboard is at: http://127.0.0.1:8000/_dashboard
[X] loaded _dashboard
[X] loaded _default
Bottle v0.12.16 server starting up (using TornadoServer())...
Listening on http://127.0.0.1:8000/
Hit Ctrl-C to quit.

Generally apps is the name of the folder where you keep all your
apps, and can be explicitly set wit the _‘run_’ command. If that
folder does not exist, it is created. PY4WEB expects to find at least
two apps in this folder: Dashboard (_dashboard) and Default
(_default). If it does not find them, it installs them.

Dashboard is a web based IDE.

Default is an app that does nothing other than welcome the user.

Notice that some apps - like Dashboard and Default - have a
special role in py4web and therefore their actual name starts with _
to avoid conflicts with apps created by you.

Once py4web is running you can access a specific app at the following
urls:

http://localhost:8000
http://localhost:8000/_dashboard
http://localhost:8000/{yourappname}/index

Notice that ONLY the Default app is special because if does not
require the “{appname}/” prefix in the path, like all the other apps do.
In general you you may want to symlink apps/_default to your default
app.

For all apps the trailing /index is optional.

Command line options

py4web provides multiple command line options which can be listed by
running it with the –help argument

py4web --help
Usage: py4web.py [OPTIONS] COMMAND [ARGS]...

 PY4WEB - a web framework for rapid development of efficient database
 driven web applications

 Type "py4web COMMAND -h" for available options on commands

Options:
 -help, -h, --help Show this message and exit.

Commands:
 call Call a function inside apps_folder
 run Run all the applications on apps_folder
 set_password Set administrator's password for the Dashboard
 setup Setup new apps folder or reinstall it
 shell Open a python shell with apps_folder added to the path
 version Show versions and exit

call command option

py4web call -h
Usage: py4web.py call [OPTIONS] APPS_FOLDER FUNC

 Call a function inside apps_folder

Options:
 --args TEXT Arguments passed to the program/function [default: {}]
 -help, -h, --help Show this message and exit.

run command option

py4web run -h
Usage: py4web.py run [OPTIONS] [APPS_FOLDER]

 Run all the applications on apps_folder

Options:
 -Y, --yes No prompt, assume yes to questions [default:
 False]

 -H, --host TEXT Host name [default: 127.0.0.1]
 -P, --port INTEGER Port number [default: 8000]
 -p, --password_file TEXT File for the encrypted password [default:
 password.txt]

 -w, --number_workers INTEGER Number of workers [default: 0]
 -d, --dashboard_mode TEXT Dashboard mode: demo, readonly, full
 (default), none [default: full]

 --watch [off|sync|lazy] Watch python changes and reload apps
 automatically, modes: off (default), sync,
 lazy
 --ssl_cert PATH SSL certificate file for HTTPS
 --ssl_key PATH SSL key file for HTTPS
 -help, -h, --help Show this message and exit.

If you want py4web to automatically reload an application upon any
changes to files of that application, you can:

	for immediate reloading (sync-mode): py4web run --watch=sync

	for reloading on any first incoming request to the application has
been changed (lazy-mode): py4web run --watch=lazy

set_password command option

py4web set_password -h
Usage: py4web.py set_password [OPTIONS]

 Set administrator's password for the Dashboard

Options:
 --password TEXT Password value (asked if missing)
 -p, --password_file TEXT File for the encrypted password [default:
 password.txt]

 -h, -help, --help Show this message and exit.

If the --dashboard_mode is not demo or none, every time
py4web starts, it asks for a one-time password for you to access the
dashboard. This is annoying. You can avoid it by storing a pdkdf2 hashed
password in a file (by default called password.txt) with the command

py4web set_password

It will not ask again unless the file is deleted. You can also use a
custom file name with

py4web set_password my_password_file.txt

and then ask py4web to re-use that password at runtime with

py4webt run -p my_password_file.txt apps

Finally you can manually create the file yourself with:

$ python3 -c "from pydal.validators import CRYPT; open('password.txt','w').write(str(CRYPT()(input('password:'))[0]))"
password: *****

setup command option

py4web setup -h
Usage: py4web.py setup [OPTIONS] [APPS_FOLDER]

 Setup new apps folder or reinstall it

Options:
 -Y, --yes No prompt, assume yes to questions [default: False]
 -help, -h, --help Show this message and exit.

This option create a new apps folder (or reinstall it). If needed, it
will ask for the confirmation of the new folder’s creation and then for
copying every standard py4web apps from the assets folder. It currently
does nothing on binaries installations and from source installation
(locally) - for them you can manually copy the existing apps folder to
the new one.

shell command option

py4web shell -h
Usage: py4web.py shell [OPTIONS] [APPS_FOLDER]

 Open a python shell with apps_folder added to the path

Options:
 -h, -help, --help Show this message and exit.

Py4web’s shell is just the regular python shell with apps added to the
search path. Notice that the shell is for all the apps, not a single
one. You can then import the needed modules from the apps you need to
access.

For example, inside a shell you can

from apps.myapp import db
from py4web import Session, Cache, Translator, DAL, Field
from py4web.utils.auth import Auth

version command option

py4web version -h
Usage: py4web.py version [OPTIONS]

 Show versions and exit

Options:
 -a, --all List version of all modules
 -h, -help, --help Show this message and exit.

With the -a option you’ll get the version of all the available python
modules, too.

Deployment on the cloud

Deployment on GCloud (aka Google App Engine)

Login into the Gcloud console (https://console.cloud.google.com/) and
create a new project. You will obtain a project id that looks like
“{project_name}-{number}”.

In your local file system make a new working folder and cd into it:

mkdir gae
cd gae

Copy the example files from py4web (assuming you have the source from
github)

cp /path/to/py4web/development_tools/gcloud/* ./

Copy or symlink your apps folder into the gae folder, or maybe make
a new apps folder containing an empty __init__.py and symlink the
individual apps you want to deploy. You should see the following
files/folders:

Makefile
apps
 __init__.py
 ... your apps ...
lib
app.yaml
main.py

Install the Google SDK, py4web and setup the working folder:

make install-gcloud-linux
make setup
gcloud config set {your email}
gcloud config set {project id}

(replace {your email} with your google email account and {project id}
with the project id obtained from Google).

Now every time you want to deploy your apps, simply do:

make deploy

You may want to customize the Makefile and app.yaml to suit your needs.
You should not need to edit main.py.

Deployment on PythonAnywhere.com

Watch the video: https://youtu.be/Wxjl_vkLAEY and follow the detailed
tutorial on
https://github.com/tomcam/py4webcasts/blob/master/docs/how-install-source-pythonanywhere.md
. The bottle_app.py script is in
py4web/deployment_tools/pythonanywhere.com/bottle_app.py

Creating your first app

From scratch

Apps can be created using the dashboard or directly from the filesystem.
Here, we are going to do it manually, as the Dashboard is described in
its own chapter.

Keep in mind that an app is a Python module; therefore it needs only a
folder and a __init__.py file in that folder:

mkdir apps/myapp
echo '' > apps/myapp/__init__.py

Notice that for Windows, you must use backslashes (i.e. ’’) instead of
slashes. Also, an empty init.py file is not strictly needed since
Python 3.3, but it will be useful later on. If you now restart py4web or
press the “Reload Apps” in the Dashboard, py4web will find this module,
import it, and recognize it as an app, simply because of its location.
An app is not required to do anything. It could just be a container for
static files or arbitrary code that other apps may want to import and
access. Yet typically most apps are designed to expose static or dynamic
web pages.

Static web pages

To expose static web pages you simply need to create a static
subfolder, and any file in there will be automatically published:

mkdir apps/myapp/static
echo 'Hello World' > apps/myapp/static/hello.txt

The newly created file will be accessible at

http://localhost:8000/myapp/static/hello.txt

Notice that static is a special path for py4web and only files under
the static folder are served.

Important: internally py4web uses the bottle
static_file [https://bottlepy.org/docs/dev/tutorial.html#static-files]
method for serving static files, which means it supports streaming,
partial content, range requests, and if-modified-since. This is all
handled automatically based on the http request headers.

Dynamic Web Pages

To create a dynamic page, you must create a function that returns the
page content. For example edit the myapp/__init__.py as follows:

import datetime
from py4web import action

@action('index')
def page():
 return "hello, now is %s" % datetime.datetime.now()

Restart py4web or press the Dashboard “Reload Apps” button, and this
page will be accessible at

http://localhost:8000/myapp/index

or

http://localhost:8000/myapp

(notice that index is optional)

Unlike other frameworks, we do not import or start the webserver within
the myapp code. This is because py4web is already running, and it
may be serving multiple apps. py4web imports our code and exposes
functions decorated with @action(). Also notice that py4web prepends
/myapp (i.e. the name of the app) to the url path declared in the
action. This is because there are multiple apps, and they may define
conflicting routes. Prepending the name of the app removes the
ambiguity. But there is one exception: if you call your app
_default, or if you create a symlink from _default to myapp,
then py4web will not prepend any prefix to the routes defined inside the
app.

On return values

py4web actions should return a string or a dictionary. If they return a
dictionary you must tell py4web what to do with it. By default py4web
will serialize it into json. For example edit __init__.py again and
add

@action('colors')
def colors():
 return {'colors': ['red', 'blue', 'green']}

This page will be visible at

http://localhost:8000/myapp/colors

and returns a JSON object {"colors": ["red", "blue", "green"]}.
Notice we chose to name the function the same as the route. This is not
required, but it is a convention that we will often follow.

You can use any template language to turn your data into a string.
PY4WEB comes with yatl, a full chapter will be dedicated later and we
will provide an example shortly.

Routes

It is possible to map patterns in the URL into arguments of the
function. For example:

@action('color/<name>')
def color(name):
 if name in ['red', 'blue', 'green']:
 return 'You picked color %s' % name
 return 'Unknown color %s' % name

This page will be visible at

http://localhost:8000/myapp/color/red

The syntax of the patterns is the same as the Bottle
routes [https://bottlepy.org/docs/dev/tutorial.html#request-routing].
A route wildcard can be defined as

	<name> or

	<name:filter> or


	```````




And these are possible filters (only `: has a config):


	:int matches (signed) digits and converts the value to integer.


	:float similar to :int but for decimal numbers.


	:path matches all characters including the slash character in a
non-greedy way, and may be used to match more than one path segment.


	``:re[:exp]``` allows you to specify a custom regular expression in
the config field. The matched value is not modified.




The pattern matching the wildcard is passed to the function under the
specified variable name.

Also, the action decorator takes an optional method argument that
can be an HTTP method or a list of methods:

@action('index', method=['GET','POST','DELETE'])





You can use multiple decorators to expose the same function under
multiple routes.




The request object

From py4web you can import request

from py4web import request

@action('paint')
def paint():
    if 'color' in request.query
       return 'Painting in %s' % request.query.get('color')
    return 'You did not specify a color'





This action can be accessed at:

http://localhost:8000/myapp/paint?color=red





Notice that the request object is a Bottle request object [https://bottlepy.org/docs/dev/api.html#the-request-object].




Templates

In order to use a yatl template you must declare it. For example create a file apps/myapp/templates/paint.html that contains:

<html>
 <head>
    <style>
      body {background:[[=color]]}
    </style>
 </head>
 <body>
    <h1>Color [[=color]]</h1>
 </body>
</html>





then modify the paint action to use the template and default to green.

@action('paint')
@action.uses('paint.html')
def paint():
    return dict(color = request.query.get('color', 'green'))





The page will now display the color name on a background of the
corresponding color.

The key ingredient here is the decorator @action.uses(...). The
arguments of action.uses are called fixtures. You can specify
multiple fixtures in one decorator or you can have multiple decorators.
Fixtures are objects that modify the behavior of the action, that may
need to be initialized per request, that may filter input and output of
the action, and that may depend on each-other (they are similar in scope
to Bottle plugins but they are declared per-action, and they have a
dependency tree which will be explained later).

The simplest type of fixture is a template. You specify it by simply
giving the name of the file to be used as template. That file must
follow the yatl syntax and must be located in the templates folder
of the app. The object returned by the action will be processed by the
template and turned into a string.

You can easily define fixtures for other template languages. This is
described later.

Some built-in fixtures are:


	the DAL object (which tells py4web to obtain a database connection
from the pool at every request, and commit on success or rollback on
failure)


	the Session object (which tells py4web to parse the cookie and
retrieve a session at every request, and to save it if changed)


	the Translator object (which tells py4web to process the
accept-language header and determine optimal
internationalization/pluralization rules)


	the Auth object (which tells py4web that the app needs access to the
user info)




They may depend on each other. For example, the Session may need the DAL
(database connection), and Auth may need both. Dependencies are handled
automatically.






From _scaffold

Most of the times, you do not want to start writing code from scratch.
You also want to follow some sane conventions outlined here, like not
putting all your code into __init__.py. PY4WEB provides a
Scaffolding (_scaffold) app, where files are organized properly and many
useful objects are pre-defined.

You will normally find the scaffold app under apps, but you can easily
create a new clone of it manually or using the Dashboard.

Here is the tree structure of the _scaffold app:

├── __init__.py          # imports everything else
├── common.py            # defines useful objects
├── controllers.py       # your actions
├── databases            # your sqlite databases and metadata
    │   └── README.md
├── models.py            # your pyDAL table model
├── settings.py          # any settings used by the app
├── settings_private.py  # (optional) settings that you want to keep private
├── static               # static files
│   ├── README.md
│   ├── components       # py4web's vue auth component
│   │   ├── auth.html
│   │   └── auth.js
│   ├── css              # CSS files, we ship bulma because it is JS agnostic
│   │   └── no.css       # we used bulma.css in the past
│   ├── favicon.ico
│   └── js               # JS files, we ship with these but you can replace them
│       ├── axios.min.js
│       ├── sugar.min.js
│       ├── utils.js
│       └── vue.min.js
├── tasks.py
├── templates            # your templates go here
│   ├── README.md
│   ├── auth.html        # the auth page for register/logic/etc (uses vue)
│   ├── generic.html     # a general purpose template
│   ├── index.html
│   └── layout.html      # a bulma layout example
└── translations         # internationalization/pluralization files go here
    └── it.json          # py4web internationalization/pluralization files are in JSON, this is an italian example





The scaffold app contains an example of a more complex action:

from py4web import action, request, response, abort, redirect, URL
from yatl.helpers import A
from . common import db, session, T, cache, auth


@action('welcome', method='GET')
@action.uses('generic.html', session, db, T, auth.user)
def index():
    user = auth.get_user()
    message = T('Hello {first_name}'.format(**user))
    return dict(message=message, user=user)





Notice the following:


	request, response, abort are defined by Bottle


	redirect and URL are similar to their web2py counterparts


	helpers (A, DIV, SPAN, IMG, etc) must be imported
from yatl.helpers . They work pretty much as in web2py


	db, session, T, cache, auth are Fixtures. They
must be defined in common.py.


	@action.uses(auth.user) indicates that this action expects a
valid logged-in user retrievable by auth.get_user(). If that is
not the case, this action redirects to the login page (defined also
in common.py and using the Vue.js auth.html component).




When you start from scaffold, you may want to edit settings.py,
templates, models.py and controllers.py but probably you
don’t need to change anything in common.py.

In your html, you can use any JS library that you want because py4web is
agnostic to your choice of JS and CSS, but with some exceptions. The
auth.html which handles registration/login/etc. uses a vue.js
component. Hence if you want to use that, you should not remove it.




App Watchdog

Py4web facilitates a development server’s setup that automatically
reloads an app when its Python source files change. Any other files
inside an app can be watched by setting a handler function using
``@app_watch_handler`` decorator.

--watch [off|sync|lazy]       Watch python changes and reload apps
                               automatically, modes: off (default), sync,
                               lazy





Two examples of its usage are reported now. Do not worry if you don’t
fully undestand them: the key point here is that even non-python code
could be reloaded automatically if you explicit it with the
``@app_watch_handler`` decorator.

Watch SASS files and compile them when edited:

from py4web.core import app_watch_handler
import sass # https://github.com/sass/libsass-python

@app_watch_handler(
    ["static_dev/sass/all.sass",
     "static_dev/sass/main.sass",
     "static_dev/sass/overrides.sass"])
def sass_compile(changed_files):
    print(changed_files) # for info, files that changed, from a list of watched files above
    ## ...
    compiled_css = sass.compile(filename=filep, include_paths=includes, output_style="compressed")
    dest = os.path.join(app, "static/css/all.css")
    with open(dest, "w") as file:
        file.write(compiled)





Validate javascript syntax when edited:

import esprima # Python implementation of Esprima from Node.js

@app_watch_handler(
    ["static/js/index.js",
     "static/js/utils.js",
     "static/js/dbadmin.js"])
def validate_js(changed_files):
    for cf in changed_files:
        print("JS syntax validation: ", cf)
        with open(os.path.abspath(cf)) as code:
            esprima.parseModule(code.read())





Filepaths passed to ``@app_watch_handler`` decorator must be
relative to an app. Python files (i.e. “*.py”) in a list passed to the
decorator are ignored since they are watched by default. Handler
function’s parameter is a list of filepaths that were changed. All
exceptions inside handlers are printed in terminal.







            

          

      

      

    
 

  


  

    
      
          
            
  
Dashboard

Login into the dashboard

[image: image1]

Click on a tab title to expand. Tabs are context dependent. For example,
open tab “Installed Applications” and click on an installed application
to select it. This will create new tabs “Routes”, “Files”, and “Model”
for the selected app.

[image: image2]

The “Files” tab allows you to browse the folder that contains the
selected app and edit any file that comprises the app. If you edit a
file you must click on “Reload Apps” under the “Installed Applications”
tab for the change to take effect. If an app fails to load, its
corresponding button is displayed in red. Click on it to see the
corresponding error.

[image: image3]

The Dashboard exposes the db of all the apps using pydal RESTAPI. It
also provides a web interface to perform search and CRUD operations.

[image: image4]

If a user visits and app and triggers a bug, the user it issued a
ticket.

[image: image5]

The ticket is logged in py4web database. The Dashboard displays the most
common recent issues and allows searching tickets.

[image: image6]





            

          

      

      

    
 

  


  

    
      
          
            
  
Fixtures

A fixture is defined as “a piece of equipment or furniture which is
fixed in position in a building or vehicle”. In our case a fixture is
something attached to the action that processes an HTTP request in order
to produce a response.

When processing any HTTP requests there are some optional operations we
may want to perform. For example parse the cookie to look for session
information, commit a database transaction, determine the preferred
language from the HTTP header and lookup proper internationalization,
etc. These operations are optional. Some actions need them and some
actions do not. They may also depend on each other. For example, if
sessions are stored in the database and our action needs it, we may need
to parse the session cookie from the header, pick up a connection from
the database connection pool, and - after the action has been executed -
save the session back in the database if data has changed.

PY4WEB fixtures provide a mechanism to specify what an action needs so
that py4web can accomplish the required tasks (and skip non required
ones) in the most efficient manner. Fixtures make the code efficient and
reduce the need for boilerplate code.

PY4WEB fixtures are similar to WSGI middleware and BottlePy plugin
except that they apply to individual actions, not to all of them, and
can depend on each other.

PY4WEB comes with some pre-defined fixtures for actions that need
sessions, database connections, internationalization, authentication,
and templates. Their usage will be explained in this chapter. The
Developer is also free to add fixtures, for example, to handle a third
party template language or third party session logic.


Important about Fixtures

In the examples below we will explain how to apply individual fixtures.
In practice fixtures can be applied in groups. For example:

preferred = action.uses(Session, Auth, T, Flash)





Then you can apply all of the at once with:

@action('index.html')
@preferred
def index():
    return dict()








Templates

PY4WEB, by default uses the yatl template language and provides a
fixture for it.

from py4web import action
from py4web.core import Template

@action('index')
@action.uses(Template('index.html', delimiters='[[ ]]'))
def index():
    return dict(message="Hello world")





Note: This example assumes that you created the application from the
scaffolding app, so that the template index.html is already created for
you.

The Template object is a Fixture. It transforms the dict() returned
by the action into a string by using the index.html template file.
In a later chapter we will provide an example of how to define a custom
fixture to use a different template language, for example Jinja2.

Notice that since the use of templates is very common and since, most
likely, every action uses a different template, we provide some
syntactic sugar, and the two following lines are equivalent:

@action.uses('index.html')
@action.uses(Template('index.html', delimiters='[[ ]]')





Notice that py4web template files are cached in RAM. The py4web caching
object is described later.




Sessions

The session object is also a Fixture. Here is a typical example of usage
to implement a counter.

from py4web import Session, action
session = Session(secret='my secret key')

@action('index')
@action.uses(session)
def index():
    counter = session.get('counter', -1)
    counter += 1
    session['counter'] = counter
    return "counter = %i" % counter





Notice that the session object has the same interface as a Python
dictionary.

By default the session object is stored in a cookie called, signed and
encrypted, using the provided secret. If the secret changes existing
sessions are invalidated. If the user switches from HTTP to HTTPS or
vice versa, the user session is invalidated. Session in cookies have a
small size limit (4Kbytes after being serialized and encrypted) so do
not put too much into them.

In py4web sessions are dictionaries but they are stored using JSON (JWT
specifically) therefore you should only store objects that are JSON
serializable. If the object is not JSON serializable, it will be
serialized using the __str__ operator and some information may be
lost.

By default py4web sessions never expire (unless they contain login
information, but that is another story) even if an expiration can be
set. Other parameters can be specified as well:

session = Session(secret='my secret key',
                  expiration=3600,
                  algorithm='HS256',
                  storage=None,
                  same_site='Lax')






	Here algorithm is the algorithm to be used for the JWT token
signature.


	storage is a parameter that allows to specify an alternate
session storage method (for example redis, or database).


	same_site is an option that prevents CSRF attacks and is enabled
by default. You can read more about it
here [https://www.owasp.org/index.php/SameSite].





Session in memcache

import memcache, time
conn = memcache.Client(['127.0.0.1:11211'], debug=0)
session = Session(storage=conn)





Notice that a secret is not required when storing cookies in memcache
because in this case the cookie only contains the UUID of the session.




Session in redis

import redis
conn = redis.Redis(host='localhost', port=6379)
conn.set = lambda k, v, e, cs=conn.set, ct=conn.ttl: (cs(k, v), e and ct(e))
session = Session(storage=conn)





Notice: a storage object must have get and set methods and the
set method must allow to specify an expiration. The redis connection
object has a ttl method to specify the expiration, hence we monkey
patch the set method to have the expected signature and
functionality.




Session in database

from py4web import Session, DAL
from py4web.utils.dbstore import DBStore
db = DAL('sqlite:memory')
session =  Session(storage=DBStore(db))





A secret is not required when storing cookies in the database because in
this case the cookie only contains the UUID of the session.

Also this is one case when the a fixture (session) requires another
fixture (db). This is handled automatically by py4web and the following
are equivalent:

@action.uses(session)
@action.uses(db, session)








Session anywhere

You can easily store sessions in any place you want. All you need to do
is provide to the Session object a storage object with both
get and set methods. For example, imagine you want to store
sessions on your local filesystem:

import os
import json

class FSStorage:
   def __init__(self, folder):
       self.folder = folder
   def get(self, key):
       filename = os.path.join(self.folder, key)
       if os.path.exists(filename):
           with open(filename) as fp:
              return json.load(fp)
       return None
   def set(self, key, value, expiration=None):
       filename = os.path.join(self.folder, key)
       with open(filename, 'w') as fp:
           json.dump(value, fp)

session = Session(storage=FSStorage('/tmp/sessions'))





We leave to you as an exercise to implement expiration, limit the number
of files per folder by using subfolders, and implement file locking. Yet
we do not recomment storing sessions on the filesystem: it is
inefficient and does not scale well.






Translator

Here is an example of usage:

from py4web import action, Translator
import os

T_FOLDER = os.path.join(os.path.dirname(__file__), 'translations')
T = Translator(T_FOLDER)

@action('index')
@action.uses(T)
def index(): return str(T('Hello world'))





The string ’hello world` will be translated based on the
internationalization file in the specified “translations” folder that
best matches the HTTP accept-language header.

Here Translator is a py4web class that extends
pluralize.Translator and also implements the Fixture interface.

We can easily combine multiple fixtures. Here, as example, we make
action with a counter that counts “visits”.

from py4web import action, Session, Translator, DAL
from py4web.utils.dbstore import DBStore
import os
db = DAL('sqlite:memory')
session =  Session(storage=DBStore(db))
T_FOLDER = os.path.join(os.path.dirname(__file__), 'translations')
T = Translator(T_FOLDER)

@action('index')
@action.uses(session, T)
def index():
    counter = session.get('counter', -1)
    counter += 1
    session['counter'] = counter
    return str(T("You have been here {n} times").format(n=counter))





Now create the following translation file translations/en.json:

{"You have been here {n} times":
  {
    "0": "This your first time here",
    "1": "You have been here once before",
    "2": "You have been here twice before",
    "3": "You have been here {n} times",
    "6": "You have been here more than 5 times"
  }
}





When visiting this site with the browser language preference set to
english and reloading multiple times you will get the following
messages:

This your first time here
You have been here once before
You have been here twice before
You have been here 3 times
You have been here 4 times
You have been here 5 times
You have been here more than 5 times





Now try create a file called translations/it.json which contains:

{"You have been here {n} times":
  {
    "0": "Non ti ho mai visto prima",
    "1": "Ti ho gia' visto",
    "2": "Ti ho gia' visto 2 volte",
    "3": "Ti ho visto {n} volte",
    "6": "Ti ho visto piu' di 5 volte"
  }
}





and set your browser preference to Italian.




The Flash fixture

It is common to want to display “alerts” to the suers. Here we refer to
them as flash messeges. There is a little more to it than just
displaying a message to the view because flash messages can have state
that must be preserved after redirection. Also they can be generated
both server side and client side, there can be only one at the time,
they may have a type, and they should be dismissible.

The Flash helper handles the server side of them. Here is an example:

from py4web import Flash

flash = Flash()

@action('index')
@action.uses(Flash)
def index():
    flash.set("Hello World", _class="info", sanitize=True)
    return dict()





and in the template:

...
<div id="py4web-flash"></div>
...
<script src="js/utils.js"></script>
[[if globals().get('flash'):]]<script>utils.flash([[=XML(flash)]]);</script>[[pass]]





By setting the value of the message in the flash helper, a flash
variable is returned by the action and this trigger the JS in the
template to inject the message in the #py4web-flash DIV which you
can position at your convenience. Also the optional class is applied to
the injected HTML.

If a page is redirected after a flash is set, the flash is remembered.
This is achieved by asking the browser to keep the message temporarily
in a one-time cookie. After redirection the message is sent back by the
browser to the server and the server sets it again automatically before
returning content, unless it is overwritten by another set.

The client can also set/add flash messages by calling:

utils.flash({'message': 'hello world', 'class': 'info'});





py4web defaults to an alert class called default and most CSS
frameworks define classes for alerts called success, error,
warning, default, and info. Yet, there is nothing in py4web
that hardcodes those names. You can use your own class names.




The DAL fixture

We have already used the DAL fixture in the context of sessions but
maybe you want direct access to the DAL object for the purpose of
accessing the database, not just sessions.

PY4WEB, by default, uses the PyDAL (Python Database Abstraction Layer)
which is documented in a later chapter. Here is an example, please
remember to create the databases folder under your project in case
it doesn’t exist:

from datetime import datetime
from py4web import action, request, DAL, Field
import os

DB_FOLDER = os.path.join(os.path.dirname(__file__), 'databases')
db = DAL('sqlite://storage.db', folder=DB_FOLDER, pool_size=1)
db.define_table('visit_log', Field('client_ip'), Field('timestamp', 'datetime'))
db.commit()

@action('index')
@action.uses(db)
def index():
    client_ip = request.environ.get('REMOTE_ADDR')
    db.visit_log.insert(client_ip=client_ip, timestamp=datetime.utcnow())
    return "Your visit was stored in database"





Notice that the database fixture defines (creates/re-creates tables)
automatically when py4web starts (and every time it reloads this app)
and picks a connection from the connection pool at every HTTP request.
Also each call to the index() action is wrapped into a transaction
and it commits on_success and rolls back on_error.




Caveats about Fixtures

Since fixtures are shared by multiple actions you are not allowed to
change their state because it would not be thread safe. There is one
exception to this rule. Actions can change some attributes of database
fields:

from py4web import Field, action, request, DAL, Field
from py4web.utils.form import Form
import os

DB_FOLDER = os.path.join(os.path.dirname(__file__), 'databases')
db = DAL('sqlite://storage.db', folder=DB_FOLDER, pool_size=1)
db.define_table('thing', Field('name', writable=False))

@action('index')
@action.uses(db, 'generic.html')
def index():
    db.thing.name.writable = True
    form = Form(db.thing)
    return dict(form=form)
)





Note thas this code will only be able to display a form, to process it
after submit, additional code needs to be added, as we will see later
on. This example is assuming that you created the application from the
scaffolding app, so that a generic.html is already created for you.

The readable, writable, default, update, and require
attributes of db.{table}.{field} are special objects of class
ThreadSafeVariable defined the threadsafevariable module. These
objects are very much like Python thread local objects but they are
re-initialized at every request using the value specified outside of the
action. This means that actions can safely change the values of these
attributes.




Custom fixtures

A fixture is an object with the following minimal structure:

from py4web import Fixture

class MyFixture(Fixture):
    def on_request(self): pass
    def on_success(self): pass
    def on_error(self): pass
    def transform(self, data): return data





if an action uses this fixture:

@action('index')
@action.uses(MyFixture())
def index(): return 'hello world'





Then on_request() is guaranteed to be called before the index()
function is called. The on_success() is guaranteed to be called if
the index() function returns successfully or raises HTTP or
performs a redirect. The on_error() is guaranteed to be called
when the index() function raises any exception other than HTTP.
The transform function is called to perform any desired
transformation of the value returned by the index() function.




Auth and Auth.user

auth and auth.user are both fixtures. They depend on
session. The role of access is to provide the action with
authentication information. It is used as follows:

from py4web import action, redirect, Session, DAL, URL
from py4web.utils.auth import Auth
import os

session = Session(secret='my secret key')
DB_FOLDER = os.path.join(os.path.dirname(__file__), 'databases')
db = DAL('sqlite://storage.db', folder=DB_FOLDER, pool_size=1)
auth = Auth(session, db)
auth.enable()

@action('index')
@action.uses(auth)
def index():
    user = auth.get_user() or redirect(URL('auth/login'))
    return 'Welcome %s' % user.get('first_name')





The constructor of the Auth object defines the auth_user table
with the following fields: username, email, password, first_name,
last_name, sso_id, and action_token (the last two are mostly for
internal use).

auth.enable() registers multiple actions including
{appname}/auth/login and it requires the presence of the
auth.html template and the auth value component provided by the
_scaffold app.

The auth object is the fixture. It manages the user information. It
exposes a single method:

auth.get_user()





which returns a python dictionary containing the information of the
currently logged in user. If the user is not logged-in, it returns
None. The code of the example redirects to the ‘auth/login’ page if
there is no user.

Since this check is very common, py4web provides an additional fixture
auth.user:

@action('index')
@action.uses(auth.user)
def index():
    user = auth.get_user()
    return 'Welcome %s' % user.get('first_name')





This fixture automatically redirects to the auth/login page if user
is not logged-in. It depends on auth, which depends on db and
session.

The Auth fixture is plugin based and supports multiple plugin
methods. They include Oauth2 (Google, Facebook, Twitter), PAM, LDAP, and
SMAL2.

Here is an example of using the Google Oauth2 plugin:

from py4web.utils.auth_plugins.oauth2google import OAuth2Google
auth.register_plugin(OAuth2Google(
    client_id='...',
    client_secret='...',
    callback_url='auth/plugin/oauth2google/callback'))





The client_id and client_secret are provided by google. The
callback url is the default option for py4web and it must be whitelisted
with Google. All Auth plugins are objects. Different plugins are
configured in different ways but they are registered using
auth.register_plugin(...). Examples are provided in
_scaffold/common.py.




Caching and Memoize

py4web provides a cache in ram object that implements the Last Recently
Used (LRU) Algorithm. It can be used to cache any function via a
decorator:

import uuid
from py4web import Cache, action
cache = Cache(size=1000)

@action('hello/<name>')
@cache.memoize(expiration=60)
def hello(name):
    return "Hello %s your code is %s" % (name, uuid.uuid4())





It will cache (memoize) the return value of the hello function, as
function of the input name, for up to 60 seconds. It will store in
cache the 1000 most recently used values. The data is always stored in
ram.

The Cache object is not a fixture and it should not and cannot be
registered using the @action.uses object but we mention it here
because some of the fixtures use this object internally. For example,
template files are cached in ram to avoid accessing the file system
every time a template needs to be rendered.




Convenience Decorators

The _scaffold application, in common.py defines two special
conveniennce decorators:

@unauthenticated
def index():
    return dict()





and

`@authenticated def index():     return dict()

They apply all of the decorators below, use a template with the same
name as the function (.html), and also register a route with the name of
action followed the number of arguments of the action separated by a
slash (/).

@unauthenticated does not require the user to be logged in.
@authenticated required the user to be logged in.

If can be combined with (and precede) other @action.uses(...) but
they should not be combined with @action(...) because they perform
that function automatically.







            

          

      

      

    
 

  


  

    
      
          
            
  
The database abstraction layer (DAL)


Dependencies

py4web comes with a Database Abstraction Layer (DAL), an API that maps
Python objects into database objects such as queries, tables, and
records. The DAL dynamically generates the SQL in real time using the
specified dialect for the database back end, so that you do not have to
write SQL code or learn different SQL dialects (the term SQL is used
generically), and the application will be portable among different types
of databases. A partial list of supported databases is show in the table
below. Please check on the py4web web site and mailing list for more
recent adapters. Google NoSQL is treated as a particular case in Chapter
13.

The Gotchas section at the end of this chapter has some more information
about specific databases.

The Windows binary distribution works out of the box with SQLite, MSSQL,
PostgreSQL and MySQL. The Mac binary distribution works out of the box
with SQLite. To use any other database back-end, run from the source
distribution and install the appropriate driver for the required back
end.

Once the proper driver is installed, start py4web from source, and it
will find the driver. Here is a list of the drivers py4web can use:







	database

	drivers (source)





	SQLite

	sqlite3 or pysqlite2 or zxJDBC (on Jython)



	PostgreSQL

	psycopg2 or zxJDBC (on Jython)



	MySQL

	pymysql or MySQLdb



	Oracle

	cx_Oracle



	MSSQL

	pyodbc or pypyodbc



	FireBird

	kinterbasdb or fdb or pyodbc



	DB2

	pyodbc



	Informix

	informixdb



	Ingres

	ingresdbi



	Cubrid

	cubriddb



	Sybase

	Sybase



	Teradata

	pyodbc



	SAPDB

	sapdb



	MongoDB

	pymongo



	IMAP

	imaplib






sqlite3, pymysql, and imaplib ship with py4web. Support of
MongoDB is experimental. The IMAP option allows to use DAL to access
IMAP.




The DAL: A quick tour

py4web defines the following classes that make up the DAL:

The DAL object represents a database connection. For example:

db = DAL('sqlite://storage.sqlite')





Table represents a database table. You do not directly instantiate
Table; instead, DAL.define_table instantiates it.

db.define_table('mytable', Field('myfield'))





The most important methods of a Table are:

insert, truncate, drop, and import_from_csv_file.

Field represents a database field. It can be instantiated and passed
as an argument to DAL.define_table.

DAL Rows is the object returned by a database select. It can be
thought of as a list of Row rows:

rows = db(db.mytable.myfield != None).select()





Row contains field values.

for row in rows:
    print row.myfield





Query is an object that represents a SQL “where” clause:

myquery = (db.mytable.myfield != None) | (db.mytable.myfield > 'A')





Set is an object that represents a set of records. Its most
important methods are count, select, update, and delete.
For example:

myset = db(myquery)
rows = myset.select()
myset.update(myfield='somevalue')
myset.delete()





Expression is something like an orderby or groupby
expression. The Field class is derived from the Expression. Here is an
example.

myorder = db.mytable.myfield.upper() | db.mytable.id
db().select(db.table.ALL, orderby=myorder)








Using the DAL “stand-alone”

The DAL can be used in a non-py4web environment via

from pydal import DAL, Field








DAL constructor

Basic use:

>>> db = DAL('sqlite://storage.sqlite')





The database is now connected and the connection is stored in the global
variable db.

At any time you can retrieve the connection string.

>>> db._uri
sqlite://storage.sqlite





and the database name

>>> db._dbname
sqlite





The connection string is called a _uri because it is an instance of
a Uniform Resource Identifier.

The DAL allows multiple connections with the same database or with
different databases, even databases of different types. For now, we will
assume the presence of a single database since this is the most common
situation.


DAL signature

DAL(uri='sqlite://dummy.db',
    pool_size=0,
    folder=None,
    db_codec='UTF-8',
    check_reserved=None,
    migrate=True,
    fake_migrate=False,
    migrate_enabled=True,
    fake_migrate_all=False,
    decode_credentials=False,
    driver_args=None,
    adapter_args=None,
    attempts=5,
    auto_import=False,
    bigint_id=False,
    debug=False,
    lazy_tables=False,
    db_uid=None,
    do_connect=True,
    after_connection=None,
    tables=None,
    ignore_field_case=True,
    entity_quoting=False,
    table_hash=None)








Connection strings (the uri parameter)

A connection with the database is established by creating an instance of
the DAL object:

db = DAL('sqlite://storage.sqlite', pool_size=0)





db is not a keyword; it is a local variable that stores the
connection object DAL. You are free to give it a different name. The
constructor of DAL requires a single argument, the connection
string. The connection string is the only py4web code that depends on a
specific back-end database. Here are examples of connection strings for
specific types of supported back-end databases (in all cases, we assume
the database is running from localhost on its default port and is named
“test”):







	SQLite

	sqlite://storage.sqlite





	MySQL

	mysql://username:pa
ssword@localhost/test?set_encoding=utf8mb4



	PostgreSQL

	p
ostgres://username:password@localhost/test



	MSSQL (legacy)

	mssql://username:password@localhost/test



	MSSQL (>=2005)

	`
mssql3://username:password@localhost/test`



	MSSQL (>=2012)

	`
mssql4://username:password@localhost/test`



	FireBird

	f
irebird://username:password@localhost/test



	Oracle

	oracle://username/password@test



	DB2

	db2://username:password@test



	Ingres

	`
ingres://username:password@localhost/test`



	Sybase

	`
sybase://username:password@localhost/test`



	Informix

	informix://username:password@test



	Teradata

	teradata
://DSN=dsn;UID=user;PWD=pass;DATABASE=test



	Cubrid

	`
cubrid://username:password@localhost/test`



	SAPDB

	sapdb://username:password@localhost/test



	IMAP

	imap://user:password@server:port



	MongoDB

	``
mongodb://username:password@localhost/test``



	Google/SQL

	google:sql://project:instance/database



	Google/NoSQL

	google:datastore



	Google/NoSQL/NDB

	google:datastore+ndb






Notice that in SQLite the database consists of a single file. If it does
not exist, it is created. This file is locked every time it is accessed.
In the case of MySQL, PostgreSQL, MSSQL, FireBird, Oracle, DB2, Ingres
and Informix the database “test” must be created outside py4web. Once
the connection is established, py4web will create, alter, and drop
tables appropriately.

In the MySQL connection string, the ?set_encoding=utf8mb4 at the end
sets the encoding to UTF-8 and avoids an
Invalid utf8 character string: error on Unicode characters that
consist of four bytes, as by default, MySQL can only handle Unicode
characters that consist of one to three bytes.

In the Google/NoSQL case the +ndb option turns on NDB. NDB uses a
Memcache buffer to read data that is accessed often. This is completely
automatic and done at the datastore level, not at the py4web level.

It is also possible to set the connection string to None. In this
case DAL will not connect to any back-end database, but the API can
still be accessed for testing.

Some times you may need to generate SQL as if you had a connection but
without actually connecting to the database. This can be done with

db = DAL('...', do_connect=False)





In this case you will be able to call _select, _insert,
_update, and _delete to generate SQL but not call select,
insert, update, and delete. In most of the cases you can use
do_connect=False even without having the required database drivers.

Notice that by default py4web uses utf8 character encoding for
databases. If you work with existing databases that behave differently,
you have to change it with the optional parameter db_codec like

db = DAL('...', db_codec='latin1')





Otherwise you’ll get UnicodeDecodeError tickets.




Connection pooling

A common argument of the DAL constructor is the pool_size; it
defaults to zero.

As it is rather slow to establish a new database connection for each
request, py4web implements a mechanism for connection pooling. Once a
connection is established and the page has been served and the
transaction completed, the connection is not closed but goes into a
pool. When the next http request arrives, py4web tries to recycle a
connection from the pool and use that for the new transaction. If there
are no available connections in the pool, a new connection is
established.

When py4web starts, the pool is always empty. The pool grows up to the
minimum between the value of pool_size and the max number of
concurrent requests. This means that if pool_size=10 but our server
never receives more than 5 concurrent requests, then the actual pool
size will only grow to 5. If pool_size=0 then connection pooling is
not used.

Connections in the pools are shared sequentially among threads, in the
sense that they may be used by two different but not simultaneous
threads. There is only one pool for each py4web process.

The pool_size parameter is ignored by SQLite and Google App Engine.
Connection pooling is ignored for SQLite, since it would not yield any
benefit.




Connection failures (attempts parameter)

If py4web fails to connect to the database it waits 1 second and by
default tries again up to 5 times before declaring a failure. In case of
connection pooling it is possible that a pooled connection that stays
open but unused for some time is closed by the database end. Thanks to
the retry feature py4web tries to re-establish these dropped
connections. The number of attempts is set via the attempts parameter.




Lazy Tables

setting lazy_tables = True provides a major performance boost. See
below: lazy tables




Model-less applications

Using py4web’s model directory for your application models is very
convenient and productive. With lazy tables and conditional models,
performance is usually acceptable even for large applications. Many
experienced developers use this in production environments.

However, it is possible to define DAL tables on demand inside controller
functions or modules. This may make sense when the number or complexity
of table definitions overloads the use of lazy tables and conditional
models.

This is referred to as “model-less” development by the py4web community.
It means less use of the automatic execution of Python files in the
model directory. It does not imply abandoning the concept of models,
views and controllers.

PY4WEB’s auto-execution of Python code inside the model directory does
this for you:


	models are run automatically every time a request is processed


	models access py4web’s global scope.




Models also make for useful interactive shell sessions when py4web is
started with the -M commandline option.

Also, remember maintainability: other py4web developers expect to find
model definitions in the model directory.

To use the “model-less” approach, you take responsibility for doing
these two housekeeping tasks. You call the table definitions when you
need them, and provide necessary access passed as parameter.

For example, a typical model-less application may leave the definitions
of the database connection objects in the model file, but define the
tables on demand per controller function.

The typical case is to move the table definitions to a module file (a
Python file saved in the modules directory).

If the function to define a set of tables is called
define_employee_tables() in a module called “table_setup.py”, your
controller that wants to refer to the tables related to employee records
in order to make an SQLFORM needs to call the
define_employee_tables() function before accessing any tables. The
define_employee_tables() function needs to access the database
connection object in order to define tables. You need to pass the db
object to the define_employee_tables() (as mentioned above).




Replicated databases

The first argument of DAL(...) can be a list of URIs. In this case
py4web tries to connect to each of them. The main purpose for this is to
deal with multiple database servers and distribute the workload among
them). Here is a typical use case:

db = DAL(['mysql://...1', 'mysql://...2', 'mysql://...3'])





In this case the DAL tries to connect to the first and, on failure, it
will try the second and the third. This can also be used to distribute
load in a database master-slave configuration.




Reserved keywords

check_reserved tells the constructor to check table names and column
names against reserved SQL keywords in target back-end databases.
check_reserved defaults to None.

This is a list of strings that contain the database back-end adapter
names.

The adapter name is the same as used in the DAL connection string. So if
you want to check against PostgreSQL and MSSQL then your connection
string would look as follows:

db = DAL('sqlite://storage.sqlite', check_reserved=['postgres', 'mssql'])





The DAL will scan the keywords in the same order as of the list.

There are two extra options “all” and “common”. If you specify all, it
will check against all known SQL keywords. If you specify common, it
will only check against common SQL keywords such as SELECT,
INSERT, UPDATE, etc.

For supported back-ends you may also specify if you would like to check
against the non-reserved SQL keywords as well. In this case you would
append _nonreserved to the name. For example:

check_reserved=['postgres', 'postgres_nonreserved']





The following database backends support reserved words checking.







	PostgreSQL

	postgres(_nonreserved)





	MySQL

	mysql



	FireBird

	firebird(_nonreserved)



	MSSQL

	mssql



	Oracle

	oracle









Database quoting and case settings

Quoting of SQL entities are enabled by default in DAL, that is:

entity_quoting = True

This way identifiers are automatically quoted in SQL generated by DAL.
At SQL level keywords and unquoted identifiers are case insensitive,
thus quoting an SQL identifier makes it case sensitive.


Notice that unquoted identifiers should always be folded to lower
case by the back-end engine according to SQL standard but not all
engines are compliant with this (for example PostgreSQL default
folding is upper case).




By default DAL ignores field case too, to change this use:

ignore_field_case = False

To be sure of using the same names in python and in the DB schema, you
must arrange for both settings above. Here is an example:

db = DAL(ignore_field_case=False)
db.define_table('table1', Field('column'), Field('COLUMN'))
query = db.table1.COLUMN != db.table1.column








Making a secure connection

Sometimes it is necessary (and advised) to connect to your database
using secure connection, especially if your database is not on the same
server as your application. In this case you need to pass additional
parameters to the database driver. You should refer to database driver
documentation for details.

For PostgreSQL with psycopg2 it should look like this:

DAL('postgres://user_name:user_password@server_addr/db_name',
    driver_args={'sslmode': 'require', 'sslrootcert': 'root.crt',
                 'sslcert': 'postgresql.crt', 'sslkey': 'postgresql.key'})





where parameters sslrootcert, sslcert and sslkey should
contain the full path to the files. You should refer to PostgreSQL
documentation on how to configure PostgreSQL server to accept secure
connections.




Other DAL constructor parameters


Database folder location

folder sets the place where migration files will be created (see
Migrations section in this chapter for details).
It is also used for SQLite databases. Automatically set within py4web.
Set a path when using DAL outside py4web.




Default migration settings

The DAL constructor migration settings are booleans affecting defaults
and global behaviour.

migrate = True sets default migrate behavior for all tables

fake_migrate = False sets default fake_migrate behavior for all
tables

migrate_enabled = True If set to False disables ALL migrations

fake_migrate_all = False If set to True fake migrates ALL tables






Experiment with the py4web shell

You can experiment with the DAL API using the py4web shell, that is
available using the shell command (read more in Chapter
1).


You need to choose an application to run the shell on, mind that
database changes may be persistent. So be carefull and do NOT exitate
to create a new application for doing testing instead of tampering
with an existing one.




Start by creating a connection. For the sake of example, you can use
SQLite. Nothing in this discussion changes when you change the back-end
engine.

Note that most of the code snippets that contain the python prompt
>>> are directly executable via a plain shell, which you can obtain
using -PS command line options.






Table constructor

Tables are defined in the DAL via define_table.


define_table signature

The signature for define_table method is:

define_table(tablename, *fields, **kwargs)





It accepts a mandatory table name and an optional number of Field
instances (even none). You can also pass a Table (or subclass)
object instead of a Field one, this clones and adds all the fields
(but the “id”) to the defining table. Other optional keyword args are:
rname, redefine, common_filter, fake_migrate,
fields, format, migrate, on_define, plural,
polymodel, primarykey, sequence_name, singular,
table_class, and trigger_name, which are discussed below.

For example:

>>> db.define_table('person', Field('name'))
<Table person (id, name)>





It defines, stores and returns a Table object called “person”
containing a field (column) “name”. This object can also be accessed via
db.person, so you do not need to catch the value returned by
define_table.




id: Notes about the primary key

Do not declare a field called “id”, because one is created by py4web
anyway. Every table has a field called “id” by default. It is an
auto-increment integer field (usually starting at 1) used for
cross-reference and for making every record unique, so “id” is a primary
key. (Note: the id counter starting at 1 is back-end specific. For
example, this does not apply to the Google App Engine NoSQL.)

Optionally you can define a field of type='id' and py4web will use
this field as auto-increment id field. This is not recommended except
when accessing legacy database tables which have a primary key under a
different name. With some limitation, you can also use different primary
keys using the primarykey parameter.




plural and singular

As pydal is a general DAL, it includes plural and singular attributes to
refer to the table names so that external elements can use the proper
name for a table. A use case is in web2py with Smartgrid objects with
references to external tables.




redefine

Tables can be defined only once but you can force py4web to redefine an
existing table:

db.define_table('person', Field('name'))
db.define_table('person', Field('name'), redefine=True)





The redefinition may trigger a migration if table definition changes.




format: Record representation

It is optional but recommended to specify a format representation for
records with the format parameter.

db.define_table('person', Field('name'), format='%(name)s')





or

db.define_table('person', Field('name'), format='%(name)s %(id)s')





or even more complex ones using a function:

db.define_table('person', Field('name'),
                format=lambda r: r.name or 'anonymous')





The format attribute will be used for two purposes: - To represent
referenced records in select/option drop-downs. - To set the
db.othertable.otherfield.represent attribute for all fields
referencing this table. This means that the Form constructor will
not show references by id but will use the preferred format
representation instead.




rname: Real name

rname sets a database backend name for the table. This makes the
py4web table name an alias, and rname is the real name used when
constructing the query for the backend. To illustrate just one use,
rname can be used to provide MSSQL fully qualified table names
accessing tables belonging to other databases on the server:
rname = 'db1.dbo.table1':python




primarykey: Support for legacy tables

primarykey helps support legacy tables with existing primary keys,
even multi-part. See Legacy databases and keyed
tables section in this chapter.




migrate, fake_migrate

migrate sets migration options for the table. Refer to
Migrations section in this chapter for details.




table_class

If you define your own Table class as a sub-class of
pydal.objects.Table, you can provide it here; this allows you to extend
and override methods. Example:

from pydal.objects import Table

class MyTable(Table):
    ...

db.define_table(..., table_class=MyTable)








sequence_name

The name of a custom table sequence (if supported by the database). Can
create a SEQUENCE (starting at 1 and incrementing by 1) or use this for
legacy tables with custom sequences.


Note that when necessary, py4web will create sequences automatically
by default.







trigger_name

Relates to sequence_name. Relevant for some backends which do not
support auto-increment numeric fields.




polymodel

For Google App Engine




on_define

on_define is a callback triggered when a lazy_table is instantiated,
although it is called anyway if the table is not lazy. This allows
dynamic changes to the table without losing the advantages of delayed
instantiation.

Example:

db = DAL(lazy_tables=True)
db.define_table('person',
    Field('name'),
    Field('age', 'integer'),
    on_define=lambda table: [
        table.name.set_attributes(requires=IS_NOT_EMPTY(), default=''),
        table.age.set_attributes(requires=IS_INT_IN_RANGE(0, 120), default=30) ])





Note this example shows how to use on_define but it is not actually
necessary. The simple requires values could be added to the Field
definitions and the table would still be lazy. However, requires
which take a Set object as the first argument, such as IS_IN_DB, will
make a query like db.sometable.somefield == some_value which would
cause sometable to be defined early. This is the situation saved by
on_define.




Lazy Tables, a major performance boost

py4web models are executed before controllers, so all tables are defined
at every request. Not all tables are needed to handle each request, so
it is possible that some of the time spent defining tables is wasted.
Conditional models (see Model-less
applications) can help, but py4web offers
a big performance boost via lazy_tables. This feature means that table
creation is deferred until the table is actually referenced. Enabling
lazy tables is made when initialising a database via the DAL
constructor. It requires setting the lazy_tables parameter:
DAL(..., lazy_tables=True):python This is one of the most
significant response-time performance boosts in py4web.




Adding attributes to fields and tables

If you need to add custom attributes to fields, you can simply do this:
db.table.field.extra = {}

“extra” is not a keyword ; it’s a custom attributes now attached to the
field object. You can do it with tables too but they must be preceded by
an underscore to avoid naming conflicts with fields:

db.table._extra = {}:python






Field constructor

These are the default values of a Field constructor:

Field(fieldname, type='string', length=None, default=DEFAULT,
      required=False, requires=DEFAULT,
      ondelete='CASCADE', notnull=False, unique=False,
      uploadfield=True, widget=None, label=None, comment=None,
      writable=True, readable=True, searchable=True, listable=True,
      update=None, authorize=None, autodelete=False, represent=None,
      uploadfolder=None, uploadseparate=None, uploadfs=None,
      compute=None, filter_in=None, filter_out=None,
      custom_qualifier=None, map_none=None, rname=None)





where DEFAULT is a special value used to allow the value None for a
parameter.

Not all of them are relevant for every field. length is relevant
only for fields of type “string”. uploadfield, authorize, and
autodelete are relevant only for fields of type “upload”.
ondelete is relevant only for fields of type “reference” and
“upload”.


	length sets the maximum length of a “string”, “password” or
“upload” field. If length is not specified a default value is
used but the default value is not guaranteed to be backward
compatible. To avoid unwanted migrations on upgrades, we recommend
that you always specify the length for string, password and upload
fields.


	default sets the default value for the field. The default value
is used when performing an insert if a value is not explicitly
specified. It is also used to pre-populate forms built from the table
using Form. Note, rather than being a fixed value, the default
can instead be a function (including a lambda function) that returns
a value of the appropriate type for the field. In that case, the
function is called once for each record inserted, even when multiple
records are inserted in a single transaction.


	required tells the DAL that no insert should be allowed on this
table if a value for this field is not explicitly specified.


	requires is a validator or a list of validators. This is not used
by the DAL, but it is used by Form. The default validators for
the given types are shown in the next section.





Notice that while requires=... is enforced at the level of forms,
required=True is enforced at the level of the DAL (insert). In
addition, notnull, unique and ondelete are enforced at
the level of the database. While they sometimes may seem redundant,
it is important to maintain the distinction when programming with the
DAL.





	rname provides the field with a “real name”, a name for the field
known to the database adapter; when the field is used, it is the
rname value which is sent to the database. The py4web name for the
field is then effectively an alias.


	ondelete translates into the “ON DELETE” SQL statement. By
default it is set to “CASCADE”. This tells the database that when it
deletes a record, it should also delete all records that refer to it.
To disable this feature, set ondelete to “NO ACTION” or “SET
NULL”.


	notnull=True translates into the “NOT NULL” SQL statement. It
prevents the database from inserting null values for the field.


	unique=True translates into the “UNIQUE” SQL statement and it
makes sure that values of this field are unique within the table. It
is enforced at the database level.


	uploadfield applies only to fields of type “upload”. A field of
type “upload” stores the name of a file saved somewhere else, by
default on the filesystem under the application “uploads/” folder. If
uploadfield is set to True, then the file is stored in a blob
field within the same table and the value of uploadfield is the
name of the blob field. This will be discussed in more detail later
in the More on uploads section in this chapter.


	uploadfolder sets the folder for uploaded files. By default, an
uploaded file goes into the application’s “uploads/” folder, that is
into os.path.join(request.folder, 'uploads') (this seems not the
case for MongoAdapter at present). For example:
Field(..., uploadfolder=os.path.join(request.folder, 'static/temp')):python
will upload files to the “py4web/applications/myapp/static/temp”
folder.


	uploadseparate if set to True will upload files under different
subfolders of the uploadfolder folder. This is optimized to avoid
too many files under the same folder/subfolder. ATTENTION: You cannot
change the value of uploadseparate from True to False without
breaking links to existing uploads. py4web either uses the separate
subfolders or it does not. Changing the behavior after files have
been uploaded will prevent py4web from being able to retrieve those
files. If this happens it is possible to move files and fix the
problem but this is not described here.


	uploadfs allows you specify a different file system where to
upload files, including an Amazon S3 storage or a remote SFTP
storage.





You need to have PyFileSystem installed for this to work.
uploadfs must point to PyFileSystem.





	autodelete determines if the corresponding uploaded file should
be deleted when the record referencing the file is deleted. For
“upload” fields only. However, records deleted by the database itself
due to a CASCADE operation will not trigger py4web’s autodelete. The
py4web Google group has workaround discussions.


	widget must be one of the available widget objects, including
custom widgets, for example: SQLFORM.widgets.string.widget. A
list of available widgets will be discussed later. Each field type
has a default widget.


	label is a string (or a helper or something that can be
serialized to a string) that contains the label to be used for this
field in auto-generated forms.


	comment is a string (or a helper or something that can be
serialized to a string) that contains a comment associated with this
field, and will be displayed to the right of the input field in the
autogenerated forms.


	writable declares whether a field is writable in forms.


	readable declares whether a field is readable in forms. If a
field is neither readable nor writable, it will not be displayed in
create and update forms.


	searchable declares whether a field is searchable in grids
(SQLFORM.grid and SQLFORM.smartgrid are described in Chapter
7 ../07 ). Notice that a field must also be readable to be searched.


	listable declares whether a field is visible in grids (when
listing multiple records)


	update contains the default value for this field when the record
is updated.


	compute is an optional function. If a record is inserted or
updated, the compute function will be executed and the field will be
populated with the function result. The record is passed to the
compute function as a dict, and the dict will not include the
current value of that, or any other compute field.


	authorize can be used to require access control on the
corresponding field, for “upload” fields only. It will be discussed
more in detail in the context of Authentication and Authorization.


	represent can be None or can point to a function that takes a
field value and returns an alternate representation for the field
value. Examples:




db.mytable.name.represent = lambda name, row: name.capitalize()
db.mytable.other_id.represent = lambda oid, row: row.myfield
db.mytable.some_uploadfield.represent = lambda val, row: A('get it', _href=URL('download', args=val))






	filter_in and filter_out can be set to callables for further
processing of field’s value. filter_in is passed the field’s
value to be written to the database before an insert or update while
filter_out is passed the value retrieved from the database before
field assignment. The value returned by the callable is then used.
See filter_in and filter_out section in
this chapter.


	custom_qualifier is a custom SQL qualifier for the field to be
used at table creation time (cannot use for field of type “id”,
“reference”, or “big-reference”).





Field types







	field type

	default field validators





	string

	IS_LENGTH(length) default length
is 512



	text

	IS_LENGTH(length) default length
is 32768



	blob

	None default length is 2**31 (2
GiB)



	boolean

	None



	integer

	IS_INT_IN_RANGE(-2**31, 2**31)



	double

	IS_FLOAT_IN_RANGE(-1e100, 1e100)



	decimal(n,m)

	``
IS_DECIMAL_IN_RANGE(-10**10, 10**10)``



	date

	IS_DATE()



	time

	IS_TIME()



	datetime

	IS_DATETIME()



	password

	IS_LENGTH(length) default length
is 512



	upload

	None default length is 512



	reference <table>

	IS_IN_DB(db, table.field, format)



	list:string

	None



	list:integer

	None



	list:reference <table>

	IS_IN_DB(d
b, table._id, format, multiple=True)



	json

	IS_EMPTY_OR(IS_JSON()) default
length is 512



	bigint

	IS_INT_IN_RANGE(-2**63, 2**63)



	big-id

	None



	big-reference

	None






Decimal requires and returns values as Decimal objects, as defined
in the Python decimal module. SQLite does not handle the decimal
type so internally we treat it as a double. The (n,m) are the number
of digits in total and the number of digits after the decimal point
respectively.

The big-id and, big-reference are only supported by some of the
database engines and are experimental. They are not normally used as
field types unless for legacy tables, however, the DAL constructor has a
bigint_id argument that when set to True makes the id fields
and reference fields big-id and big-reference respectively.

The list:<type> fields are special because they are designed to take
advantage of certain denormalization features on NoSQL (in the case of
Google App Engine NoSQL, the field types ListProperty and
StringListProperty) and back-port them all the other supported
relational databases. On relational databases lists are stored as a
text field. The items are separated by a | and each | in
string item is escaped as a ||. They are discussed in list: and
contains section in this chapter.

The json field type is pretty much explanatory. It can store any
json serializable object. It is designed to work specifically for
MongoDB and backported to the other database adapters for portability.

blob fields are also special. By default, binary data is encoded in
base64 before being stored into the actual database field, and it is
decoded when extracted. This has the negative effect of using 33% more
storage space than necessary in blob fields, but has the advantageof
making the communication independent of back-end-specific escaping
conventions.




Run-time field and table modification

Most attributes of fields and tables can be modified after they are
defined:

>>> db.define_table('person', Field('name', default=''), format='%(name)s')
<Table person (id, name)>
>>> db.person._format = '%(name)s/%(id)s'
>>> db.person.name.default = 'anonymous'





notice that attributes of tables are usually prefixed by an underscore
to avoid conflict with possible field names.

You can list the tables that have been defined for a given database
connection:

>>> db.tables
['person']





You can query for the type of a table:

>>> type(db.person)
<class 'pydal.objects.Table'>





You can access a table using different syntaxes:

>>> db.person is db['person']
True





You can also list the fields that have been defined for a given table:

>>> db.person.fields
['id', 'name']





Similarly you can access fields from their name in multiple equivalent
ways:

>>> type(db.person.name)
<class 'pydal.objects.Field'>
>>> db.person.name is db.person['name']
True





Given a field, you can access the attributes set in its definition:

>>> db.person.name.type
string
>>> db.person.name.unique
False
>>> db.person.name.notnull
False
>>> db.person.name.length
32





including its parent table, tablename, and parent connection:

>>> db.person.name._table == db.person
True
>>> db.person.name._tablename == 'person'
True
>>> db.person.name._db == db
True





A field also has methods. Some of them are used to build queries and we
will see them later. A special method of the field object is
validate and it calls the validators for the field.

>>> db.person.name.validate('John')
('John', None)





which returns a tuple (value, error). error is None if the
input passes validation.






Migrations

define_table checks whether or not the corresponding table exists.
If it does not, it generates the SQL to create it and executes the SQL.
If the table does exist but differs from the one being defined, it
generates the SQL to alter the table and executes it. If a field has
changed type but not name, it will try to convert the data (If you do
not want this, you need to redefine the table twice, the first time,
letting py4web drop the field by removing it, and the second time adding
the newly defined field so that py4web can create it.). If the table
exists and matches the current definition, it will leave it alone. In
all cases it will create the db.person object that represents the
table.

We refer to this behavior as a “migration”. py4web logs all migrations
and migration attempts in the file “sql.log”.


Notice that by default py4web uses the “app/databases” folder for the
log file and all other migration files it needs. You can change this
setting the folder argument to DAL. To set a different log file
name, for example “migrate.log” you can do
db = DAL(..., adapter_args=dict(logfile='migrate.log')):python




The first argument of define_table is always the table name. The
other unnamed arguments are the fields (Field). The function also takes
an optional keyword argument called “migrate”:

db.define_table('person', ..., migrate='person.table')





The value of migrate is the filename where py4web stores internal
migration information for this table. These files are very important and
should never be removed while the corresponding tables exist. In cases
where a table has been dropped and the corresponding file still exist,
it can be removed manually. By default, migrate is set to True. This
causes py4web to generate the filename from a hash of the connection
string. If migrate is set to False, the migration is not performed, and
py4web assumes that the table exists in the datastore and it contains
(at least) the fields listed in define_table.

There may not be two tables in the same application with the same
migrate filename.

The DAL class also takes a “migrate” argument, which determines the
default value of migrate for calls to define_table. For example,

db = DAL('sqlite://storage.sqlite', migrate=False)





will set the default value of migrate to False whenever
db.define_table is called without a migrate argument.


Notice that py4web only migrates new columns, removed columns, and
changes in column type (except in SQLite). py4web does not migrate
changes in attributes such as changes in the values of default,
unique, notnull, and ondelete.




Migrations can be disabled for all tables at once:

db = DAL(..., migrate_enabled=False)





This is the recommended behavior when two apps share the same database.
Only one of the two apps should perform migrations, the other should
disabled them.


Fixing broken migrations

There are two common problems with migrations and there are ways to
recover from them.

One problem is specific with SQLite. SQLite does not enforce column
types and cannot drop columns. This means that if you have a column of
type string and you remove it, it is not really removed. If you add the
column again with a different type (for example datetime) you end up
with a datetime column that contains strings (junk for practical
purposes). py4web does not complain about this because it does not know
what is in the database, until it tries to retrieve records and fails.

If py4web returns an error in some parse function when selecting
records, most likely this is due to corrupted data in a column because
of the above issue.

The solution consists in updating all records of the table and updating
the values in the column in question with None.

The other problem is more generic but typical with MySQL. MySQL does not
allow more than one ALTER TABLE in a transaction. This means that py4web
must break complex transactions into smaller ones (one ALTER TABLE at
the time) and commit one piece at the time. It is therefore possible
that part of a complex transaction gets committed and one part fails,
leaving py4web in a corrupted state. Why would part of a transaction
fail? Because, for example, it involves altering a table and converting
a string column into a datetime column, py4web tries to convert the
data, but the data cannot be converted. What happens to py4web? It gets
confused about what exactly is the table structure actually stored in
the database.

The solution consists of enabling fake migrations:

db.define_table(...., migrate=True, fake_migrate=True)





This will rebuild py4web metadata about the table according to the table
definition. Try multiple table definitions to see which one works (the
one before the failed migration and the one after the failed migration).
Once successful remove the fake_migrate=True parameter.

Before attempting to fix migration problems it is prudent to make a copy
of “applications/yourapp/databases/*.table” files.

Migration problems can also be fixed for all tables at once:

db = DAL(..., fake_migrate_all=True)





This also fails if the model describes tables that do not exist in the
database, but it can help narrowing down the problem.




Migration control summary

The logic of the various migration arguments are summarized in this
pseudo-code:

if DAL.migrate_enabled and table.migrate:
   if DAL.fake_migrate_all or table.fake_migrate:
       perform fake migration
   else:
       perform migration










insert

Given a table, you can insert records

>>> db.person.insert(name="Alex")
1
>>> db.person.insert(name="Bob")
2





Insert returns the unique “id” value of each record inserted.

You can truncate the table, i.e., delete all records and reset the
counter of the id.

>>> db.person.truncate()





Now, if you insert a record again, the counter starts again at 1 (this
is back-end specific and does not apply to Google NoSQL):

>>> db.person.insert(name="Alex")
1





Notice you can pass a parameter to truncate, for example you can
tell SQLite to restart the id counter.

>>> db.person.truncate('RESTART IDENTITY CASCADE')





The argument is in raw SQL and therefore engine specific.

py4web also provides a bulk_insert method

>>> db.person.bulk_insert([{'name': 'Alex'}, {'name': 'John'}, {'name': 'Tim'}])
[3, 4, 5]





It takes a list of dictionaries of fields to be inserted and performs
multiple inserts at once. It returns the list of “id” values of the
inserted records. On the supported relational databases there is no
advantage in using this function as opposed to looping and performing
individual inserts but on Google App Engine NoSQL, there is a major
speed advantage.




commit and rollback

The insert, truncate, delete, and update operations aren’t actually
committed until py4web issues the commit command. The create and drop
operations may be executed immediately, depending on the database
engine. Calls to py4web actions are automatically wrapped in
transactions. If you executed commands via the shell, you are required
to manually commit:

>>> db.commit()





To check it let’s insert a new record:

>>> db.person.insert(name="Bob")
2





and roll back, i.e., ignore all operations since the last commit:

>>> db.rollback()





If you now insert again, the counter will again be set to 2, since the
previous insert was rolled back.

>>> db.person.insert(name="Bob")
2





Code in models, views and controllers is enclosed in py4web code that
looks like this (pseudo code) :

try:
    execute models, controller function and view
except:
    rollback all connections
    log the traceback
    send a ticket to the visitor
else:
    commit all connections
    save cookies, sessions and return the page





So in models, views and controllers there is no need to ever call
commit or rollback explicitly in py4web unless you need more
granular control. However, in modules you will need to use commit().




Raw SQL


Timing queries

All queries are automatically timed by py4web. The variable
db._timings is a list of tuples. Each tuple contains the raw SQL
query as passed to the database driver and the time it took to execute
in seconds. This variable can be displayed in views using the toolbar:

{{=response.toolbar()}}








executesql

The DAL allows you to explicitly issue SQL statements.

>>> db.executesql('SELECT * FROM person;')
[(1, u'Massimo'), (2, u'Massimo')]





In this case, the return values are not parsed or transformed by the
DAL, and the format depends on the specific database driver. This usage
with selects is normally not needed, but it is more common with indexes.

executesql takes five optional arguments: placeholders,
as_dict, fields, colnames, and as_ordered_dict.

placeholders is an optional sequence of values to be substituted in
or, if supported by the DB driver, a dictionary with keys matching named
placeholders in your SQL.

If as_dict is set to True, the results cursor returned by the DB
driver will be converted to a sequence of dictionaries keyed with the db
field names. Results returned with as_dict = True are the same as
those returned when applying .as_list() to a normal select:

[{'field1': val1_row1, 'field2': val2_row1}, {'field1': val1_row2, 'field2': val2_row2}]





as_ordered_dict is pretty much like as_dict but the former
ensures that the order of resulting fields (OrderedDict keys) reflect
the order on which they are returned from DB driver:

[OrderedDict([('field1', val1_row1), ('field2', val2_row1)]),
 OrderedDict([('field1', val1_row2), ('field2', val2_row2)])]





The fields argument is a list of DAL Field objects that match the
fields returned from the DB. The Field objects should be part of one or
more Table objects defined on the DAL object. The fields list can
include one or more DAL Table objects in addition to or instead of
including Field objects, or it can be just a single table (not in a
list). In that case, the Field objects will be extracted from the
table(s).

Instead of specifying the fields argument, the colnames argument
can be specified as a list of field names in tablename.fieldname format.
Again, these should represent tables and fields defined on the DAL
object.

It is also possible to specify both fields and the associated
colnames. In that case, fields can also include DAL Expression
objects in addition to Field objects. For Field objects in “fields”, the
associated colnames must still be in tablename.fieldname format. For
Expression objects in fields, the associated colnames can be any
arbitrary labels.

Notice, the DAL Table objects referred to by fields or colnames
can be dummy tables and do not have to represent any real tables in the
database. Also, note that the fields and colnames must be in the
same order as the fields in the results cursor returned from the DB.




_lastsql

Whether SQL was executed manually using executesql or was SQL generated
by the DAL, you can always find the SQL code in db._lastsql. This is
useful for debugging purposes:

>>> rows = db().select(db.person.ALL)
>>> db._lastsql
SELECT person.id, person.name FROM person;






py4web never generates queries using the “*” operator. py4web is
always explicit when selecting fields.









drop

Finally, you can drop tables and all data will be lost:

db.person.drop()








Indexes

Currently the DAL API does not provide a command to create indexes on
tables, but this can be done using the executesql command. This is
because the existence of indexes can make migrations complex, and it is
better to deal with them explicitly. Indexes may be needed for those
fields that are used in recurrent queries.

Here is an example of how to:

db = DAL('sqlite://storage.sqlite')
db.define_table('person', Field('name'))
db.executesql('CREATE INDEX IF NOT EXISTS myidx ON person (name);')





Other database dialects have very similar syntaxes but may not support
the optional “IF NOT EXISTS” directive.




Legacy databases and keyed tables

py4web can connect to legacy databases under some conditions.

The easiest way is when these conditions are met: - Each table must have
a unique auto-increment integer field called “id” - Records must be
referenced exclusively using the “id” field.

When accessing an existing table, i.e., a table not created by py4web in
the current application, always set migrate=False.

If the legacy table has an auto-increment integer field but it is not
called “id”, py4web can still access it but the table definition must
declare the auto-increment field with ‘id’ type (that is using
FIeld('...', 'id')).

Finally if the legacy table uses a primary key that is not an
auto-increment id field it is possible to use a “keyed table”, for
example:

db.define_table('account',
                Field('accnum', 'integer'),
                Field('acctype'),
                Field('accdesc'),
                primarykey=['accnum', 'acctype'],
                migrate=False)






	primarykey is a list of the field names that make up the primary
key.


	All primarykey fields have a NOT NULL set even if not specified.


	Keyed tables can only reference other keyed tables.


	Referencing fields must use the reference tablename.fieldname
format.


	The update_record function is not available for Rows of keyed
tables.





Currently keyed tables are only supported for DB2, MSSQL, Ingres and
Informix, but others engines will be added.




At the time of writing, we cannot guarantee that the primarykey
attribute works with every existing legacy table and every supported
database backend. For simplicity, we recommend, if possible, creating a
database view that has an auto-increment id field.




Distributed transaction


At the time of writing this feature is only supported by PostgreSQL,
MySQL and Firebird, since they expose API for two-phase commits.




Assuming you have two (or more) connections to distinct PostgreSQL
databases, for example:

db_a = DAL('postgres://...')
db_b = DAL('postgres://...')





In your models or controllers, you can commit them concurrently with:

DAL.distributed_transaction_commit(db_a, db_b)





On failure, this function rolls back and raises an Exception.

In controllers, when one action returns, if you have two distinct
connections and you do not call the above function, py4web commits them
separately. This means there is a possibility that one of the commits
succeeds and one fails. The distributed transaction prevents this from
happening.




More on uploads

Consider the following model:

db.define_table('myfile',
                Field('image', 'upload', default='path/to/file'))





In the case of an “upload” field, the default value can optionally be
set to a path (an absolute path or a path relative to the current app
folder), the default value is then assigned to each new record that does
not specify an image.

Notice that this way multiple records may end to reference the same
default image file and this could be a problem on a Field having
autodelete enabled. When you do not want to allow duplicates for the
image field (i.e. multiple records referencing the same file) but still
want to set a default value for the “upload” then you need a way to copy
the default file for each new record that does not specify an image.
This can be obtained using a file-like object referencing the default
file as the default argument to Field, or even with:

Field('image', 'upload', default=dict(data='<file_content>', filename='<file_name>'))





Normally an insert is handled automatically via a Form but
occasionally you already have the file on the filesystem and want to
upload it programmatically. This can be done in this way:

with open(filename, 'rb') as stream:
    db.myfile.insert(image=db.myfile.image.store(stream, filename))





It is also possible to insert a file in a simpler way and have the
insert method call store automatically:

with open(filename, 'rb') as stream:
    db.myfile.insert(image=stream)





In this case the filename is obtained from the stream object if
available.

The store method of the upload field object takes a file stream and
a filename. It uses the filename to determine the extension (type) of
the file, creates a new temp name for the file (according to py4web
upload mechanism) and loads the file content in this new temp file
(under the uploads folder unless specified otherwise). It returns the
new temp name, which is then stored in the image field of the
db.myfile table.

Note, if the file is to be stored in an associated blob field rather
than the file system, the store method will not insert the file in
the blob field (because store is called before the insert), so the
file must be explicitly inserted into the blob field:

db.define_table('myfile',
                Field('image', 'upload', uploadfield='image_file'),
                Field('image_file', 'blob'))
with open(filename, 'rb') as stream:
    db.myfile.insert(image=db.myfile.image.store(stream, filename),
                     image_file=stream.read())





The retrieve method does the opposite of store.

When uploaded files are stored on filesystem (as in the case of a plain
Field('image', 'upload')) the code:

row = db(db.myfile).select().first()
(filename, fullname) = db.myfile.image.retrieve(row.image, nameonly=True)





retrieves the original file name (filename) as seen by the user at
upload time and the name of stored file (fullname, with path relative to
application folder). While in general the call:

(filename, stream) = db.myfile.image.retrieve(row.image)





retrieves the original file name (filename) and a file-like object ready
to access uploaded file data (stream).


Notice that the stream returned by retrieve is a real file object
in the case that uploaded files are stored on filesystem. In that
case remember to close the file when you are done, calling
stream.close().




Here is an example of safe usage of retrieve:

from contextlib import closing
import shutil
row = db(db.myfile).select().first()
(filename, stream) = db.myfile.image.retrieve(row.image)
with closing(stream) as src, closing(open(filename, 'wb')) as dest:
    shutil.copyfileobj(src, dest)








Query, Set, Rows

Let’s consider again the table defined (and dropped) previously and
insert three records:

>>> db.define_table('person', Field('name'))
<Table person (id, name)>
>>> db.person.insert(name="Alex")
1
>>> db.person.insert(name="Bob")
2
>>> db.person.insert(name="Carl")
3





You can store the table in a variable. For example, with variable
person, you could do:

>>> person = db.person





You can also store a field in a variable such as name. For example,
you could also do:

>>> name = person.name





You can even build a query (using operators like ==, !=, <, >, <=, >=,
like, belongs) and store the query in a variable q such as in:

>>> q = name == 'Alex'





When you call db with a query, you define a set of records. You can
store it in a variable s and write:

>>> s = db(q)





Notice that no database query has been performed so far. DAL + Query
simply define a set of records in this db that match the query. py4web
determines from the query which table (or tables) are involved and, in
fact, there is no need to specify that.




select

Given a Set, s, you can fetch the records with the command
select:

>>> rows = s.select()





It returns an iterable object of class pydal.objects.Rows whose
elements are Row objects. pydal.objects.Row objects act like
dictionaries, but their elements can also be accessed as attributes,
like gluon.storage.Storage.The former differ from the latter because
its values are read-only.

The Rows object allows looping over the result of the select and
printing the selected field values for each row:

>>> for row in rows:
...     print row.id, row.name
...
1 Alex





You can do all the steps in one statement:

>>> for row in db(db.person.name == 'Alex').select():
...     print row.name
...
Alex





The select command can take arguments. All unnamed arguments are
interpreted as the names of the fields that you want to fetch. For
example, you can be explicit on fetching field “id” and field “name”:

>>> for row in db().select(db.person.id, db.person.name):
...     print row.name
...
Alex
Bob
Carl





The table attribute ALL allows you to specify all fields:

>>> for row in db().select(db.person.ALL):
...     print row.id, row.name
...
1 Alex
2 Bob
3 Carl





Notice that there is no query string passed to db. py4web understands
that if you want all fields of the table person without additional
information then you want all records of the table person.

An equivalent alternative syntax is the following:

>>> for row in db(db.person).select():
...     print row.id, row.name
...
1 Alex
2 Bob
3 Carl





and py4web understands that if you ask for all records of the table
person without additional information, then you want all the fields of
table person.

Given one row

>>> row = rows[0]





you can extract its values using multiple equivalent expressions:

>>> row.name
Alex
>>> row['name']
Alex
>>> row('person.name')
Alex





The latter syntax is particularly handy when selecting en expression
instead of a column. We will show this later.

You can also do

rows.compact = False





to disable the notation

rows[i].name





and enable, instead, the less compact notation:

rows[i].person.name





Yes this is unusual and rarely needed.

Row objects also have two important methods:

row.delete_record()





and

row.update_record(name="new value")






Using an iterator-based select for lower memory use

Python “iterators” are a type of “lazy-evaluation”. They ‘feed’ data one
step at time; traditional Python loops create the entire set of data in
memory before looping.

The traditional use of select is:

for row in db(db.table).select():
    ...





but for large numbers of rows, using an iterator-based alternative has
dramatically lower memory use:

for row in db(db.table).iterselect():
    ...





Testing shows this is around 10% faster as well, even on machines with
large RAM.




Rendering rows using represent

You may wish to rewrite rows returned by select to take advantage of
formatting information contained in the represents setting of the
fields.

rows = db(query).select()
repr_row = rows.render(0)





If you don’t specify an index, you get a generator to iterate over all
the rows:

for row in rows.render():
    print row.myfield





Can also be applied to slices:

for row in rows[0:10].render():
    print row.myfield





If you only want to transform selected fields via their “represent”
attribute, you can list them in the “fields” argument:

repr_row = row.render(0, fields=[db.mytable.myfield])





Note, it returns a transformed copy of the original Row, so there’s no
update_record (which you wouldn’t want anyway) or delete_record.




Shortcuts

The DAL supports various code-simplifying shortcuts. In particular:

myrecord = db.mytable[id]





returns the record with the given id if it exists. If the id
does not exist, it returns None. The above statement is equivalent
to

myrecord = db(db.mytable.id == id).select().first()





You can delete records by id:

del db.mytable[id]





and this is equivalent to

db(db.mytable.id == id).delete()





and deletes the record with the given id, if it exists.

Note: this delete shortcut syntax does not currently work if
versioning is activated

You can insert records:

db.mytable[None] = dict(myfield='somevalue')





It is equivalent to

db.mytable.insert(myfield='somevalue')





and it creates a new record with field values specified by the
dictionary on the right hand side.

Note: insert shortcut was previously db.table[0] = .... It has
changed in PyDAL 19.02 to permit normal usage of id 0.

You can update records:

db.mytable[id] = dict(myfield='somevalue')





which is equivalent to

db(db.mytable.id == id).update(myfield='somevalue')





and it updates an existing record with field values specified by the
dictionary on the right hand side.




Fetching a Row

Yet another convenient syntax is the following:

record = db.mytable(id)
record = db.mytable(db.mytable.id == id)
record = db.mytable(id, myfield='somevalue')





Apparently similar to db.mytable[id] the above syntax is more
flexible and safer. First of all it checks whether id is an int (or
str(id) is an int) and returns None if not (it never raises an
exception). It also allows to specify multiple conditions that the
record must meet. If they are not met, it also returns None.




Recursive selects

Consider the previous table person and a new table “thing” referencing a
“person”:

db.define_table('thing',
                Field('name'),
                Field('owner_id', 'reference person'))





and a simple select from this table:

things = db(db.thing).select()





which is equivalent to

things = db(db.thing._id != None).select()





where _id is a reference to the primary key of the table. Normally
db.thing._id is the same as db.thing.id and we will assume that
in most of this book.

For each Row of things it is possible to fetch not just fields from the
selected table (thing) but also from linked tables (recursively):

for thing in things:
    print thing.name, thing.owner_id.name





Here thing.owner_id.name requires one database select for each thing
in things and it is therefore inefficient. We suggest using joins
whenever possible instead of recursive selects, nevertheless this is
convenient and practical when accessing individual records.

You can also do it backwards, by selecting the things referenced by a
person:

person = db.person(id)
for thing in person.thing.select(orderby=db.thing.name):
    print person.name, 'owns', thing.name





In this last expression person.thing is a shortcut for

db(db.thing.owner_id == person.id)





i.e. the Set of things referenced by the current person. This
syntax breaks down if the referencing table has multiple references to
the referenced table. In this case one needs to be more explicit and use
a full Query.




orderby, groupby, limitby, distinct, having, orderby_on_limitby, join, left, cache

The select command takes a number of optional arguments.


orderby

You can fetch the records sorted by name:

>>> for row in db().select(db.person.ALL, orderby=db.person.name):
...     print row.name
...
Alex
Bob
Carl





You can fetch the records sorted by name in reverse order (notice the
tilde):

>>> for row in db().select(db.person.ALL, orderby=~db.person.name):
...     print row.name
...
Carl
Bob
Alex





You can have the fetched records appear in random order:

>>> for row in db().select(db.person.ALL, orderby='<random>'):
...     print row.name
...
Carl
Alex
Bob






The use of orderby='<random>' is not supported on Google NoSQL.
However, to overcome this limit, sorting can be accomplished on
selected rows:




import random
rows = db(...).select().sort(lambda row: random.random())





You can sort the records according to multiple fields by concatenating
them with a “|”:

>>> for row in db().select(db.person.name, orderby=db.person.name|db.person.id):
...     print row.name
...
Alex
Bob
Carl








groupby, having

Using groupby together with orderby, you can group records with
the same value for the specified field (this is back-end specific, and
is not on the Google NoSQL):

>>> for row in db().select(db.person.ALL,
...                        orderby=db.person.name,
...                        groupby=db.person.name):
...     print row.name
...
Alex
Bob
Carl





You can use having in conjunction with groupby to group
conditionally (only those having the condition are grouped).

>>> print db(query1).select(db.person.ALL, groupby=db.person.name, having=query2)





Notice that query1 filters records to be displayed, query2 filters
records to be grouped.




distinct

With the argument distinct=True, you can specify that you only want
to select distinct records. This has the same effect as grouping using
all specified fields except that it does not require sorting. When using
distinct it is important not to select ALL fields, and in particular not
to select the “id” field, else all records will always be distinct.

Here is an example:

>>> for row in db().select(db.person.name, distinct=True):
...     print row.name
...
Alex
Bob
Carl





Notice that distinct can also be an expression, for example:

>>> for row in db().select(db.person.name, distinct=db.person.name):
...     print row.name
...
Alex
Bob
Carl








limitby

With limitby=(min, max), you can select a subset of the records from
offset=min to but not including offset=max. In the next example we
select the first two records starting at zero:

>>> for row in db().select(db.person.ALL, limitby=(0, 2)):
...     print row.name
...
Alex
Bob








orderby_on_limitby

Note that the DAL defaults to implicitly adding an orderby when using a
limitby. This ensures the same query returns the same results each time,
important for pagination. But it can cause performance problems. use
orderby_on_limitby = False to change this (this defaults to True).




join, left

These are involved in managing one to many relations . They are
described in Inner join and Left outer join sections respectively.




cache, cacheable

An example use which gives much faster selects is:
rows = db(query).select(cache=(cache.ram, 3600), cacheable=True):python
Look at Caching selects section in this chapter, to understand what
the trade-offs are.






Logical operators

Queries can be combined using the binary AND operator “&”:

>>> rows = db((db.person.name=='Alex') & (db.person.id > 3)).select()
>>> for row in rows: print row.id, row.name
>>> len(rows)
0





and the binary OR operator “|”:

>>> rows = db((db.person.name == 'Alex') | (db.person.id > 3)).select()
>>> for row in rows: print row.id, row.name
1 Alex





You can negate a sub-query inverting its operator:

>>> rows = db((db.person.name != 'Alex') | (db.person.id > 3)).select()
>>> for row in rows: print row.id, row.name
2 Bob
3 Carl





or by explicit negation with the “~” unary operator:

>>> rows = db(~(db.person.name == 'Alex') | (db.person.id > 3)).select()
>>> for row in rows: print row.id, row.name
2 Bob
3 Carl






Due to Python restrictions in overloading “and” and “or”
operators, these cannot be used in forming queries. The binary
operators “&” and “|” must be used instead. Note that these
operators (unlike “and” and “or”) have higher precedence than
comparison operators, so the “extra” parentheses in the above
examples are mandatory. Similarly, the unary operator “~” has
higher precedence than comparison operators, so ~-negated
comparisons must also be parenthesized.




It is also possible to build queries using in-place logical operators:

>>> query = db.person.name != 'Alex'
>>> query &= db.person.id > 3
>>> query |= db.person.name == 'John'








count, isempty, delete, update

You can count records in a set:

>>> db(db.person.name != 'William').count()
3





Notice that count takes an optional distinct argument which
defaults to False, and it works very much like the same argument for
select. count has also a cache argument that works very much
like the equivalent argument of the select method.

Sometimes you may need to check if a table is empty. A more efficient
way than counting is using the isempty method:

>>> db(db.person).isempty()
False





You can delete records in a set:

>>> db(db.person.id > 3).delete()
0





The delete method returns the number of records that were deleted.

And you can update all records in a set by passing named arguments
corresponding to the fields that need to be updated:

>>> db(db.person.id > 2).update(name='Ken')
1





The update method returns the number of records that were updated.




Expressions

The value assigned an update statement can be an expression. For example
consider this model

db.define_table('person',
                Field('name'),
                Field('visits', 'integer', default=0))

db(db.person.name == 'Massimo').update(visits = db.person.visits + 1)





The values used in queries can also be expressions

db.define_table('person',
                Field('name'),
                Field('visits', 'integer', default=0),
                Field('clicks', 'integer', default=0))

db(db.person.visits == db.person.clicks + 1).delete()








case

An expression can contain a case clause for example:

>>> condition = db.person.name.startswith('B')
>>> yes_or_no = condition.case('Yes', 'No')
>>> for row in db().select(db.person.name, yes_or_no):
...     print row.person.name, row[yes_or_no]  # could be row(yes_or_no) too
...
Alex No
Bob Yes
Ken No








update_record

py4web also allows updating a single record that is already in memory
using update_record

>>> row = db(db.person.id == 2).select().first()
>>> row.update_record(name='Curt')
<Row {'id': 2L, 'name': 'Curt'}>





update_record should not be confused with

>>> row.update(name='Curt')





because for a single row, the method update updates the row object
but not the database record, as in the case of update_record.

It is also possible to change the attributes of a row (one at a time)
and then call update_record() without arguments to save the changes:

>>> row = db(db.person.id > 2).select().first()
>>> row.name = 'Philip'
>>> row.update_record() # saves above change
<Row {'id': 3L, 'name': 'Philip'}>






Note, you should avoid using row.update_record() with no
arguments when the row object contains fields that have an
update attribute (e.g.,
Field('modified_on', update=request.now)). Calling
row.update_record() will retain all of the existing values in
the row object, so any fields with update attributes will
have no effect in this case. Be particularly mindful of this with
tables that include auth.signature.




The update_record method is available only if the table’s id
field is included in the select, and cacheable is not set to
True.




Inserting and updating from a dictionary

A common issue consists of needing to insert or update records in a
table where the name of the table, the field to be updated, and the
value for the field are all stored in variables. For example:
tablename, fieldname, and value.

The insert can be done using the following syntax:

db[tablename].insert(**{fieldname:value})





The update of record with given id can be done with:

db(db[tablename]._id == id).update(**{fieldname:value})





Notice we used table._id instead of table.id. In this way the
query works even for tables with a primary key field with type other
than “id”.




first and last

Given a Rows object containing records:

rows = db(query).select()
first_row = rows.first()
last_row = rows.last()





are equivalent to

first_row = rows[0] if len(rows) else None
last_row = rows[-1] if len(rows) else None





Notice, first() and last() allow you to obtain obviously the
first and last record present in your query, but this won’t mean that
these records are going to be the first or last inserted records. In
case you want the first or last record inputted in a given table don’t
forget to use orderby=db.table_name.id. If you forget you will only
get the first and last record returned by your query which are often in
a random order determined by the backend query optimiser.




as_dict and as_list

A Row object can be serialized into a regular dictionary using the
as_dict() method and a Rows object can be serialized into a list of
dictionaries using the as_list() method. Here are some examples:

rows = db(query).select()
rows_list = rows.as_list()
first_row_dict = rows.first().as_dict()





These methods are convenient for passing Rows to generic views and or to
store Rows in sessions (since Rows objects themselves cannot be
serialized since contain a reference to an open DB connection):

rows = db(query).select()
session.rows = rows  # not allowed!
session.rows = rows.as_list()  # allowed!








Combining rows

Rows objects can be combined at the Python level. Here we assume:

>>> print rows1
person.name
Max
Tim

>>> print rows2
person.name
John
Tim





You can do union of the records in two sets of rows:

>>> rows3 = rows1 + rows2
>>> print rows3
person.name
Max
Tim
John
Tim





You can do union of the records removing duplicates:

>>> rows3 = rows1 | rows2
>>> print rows3
person.name
Max
Tim
John





You can do intersection of the records in two sets of rows:

>>> rows3 = rows1 & rows2
>>> print rows3
person.name
Tim








find, exclude, sort

Some times you need to perform two selects and one contains a subset of
a previous select. In this case it is pointless to access the database
again. The find, exclude and sort objects allow you to
manipulate a Rows object and generate another one without accessing the
database. More specifically: - find returns a new set of Rows
filtered by a condition and leaves the original unchanged. - exclude
returns a new set of Rows filtered by a condition and removes them from
the original Rows. - sort returns a new set of Rows sorted by a
condition and leaves the original unchanged.

All these methods take a single argument, a function that acts on each
individual row.

Here is an example of usage:

>>> db.define_table('person', Field('name'))
<Table person (id, name)>
>>> db.person.insert(name='John')
1
>>> db.person.insert(name='Max')
2
>>> db.person.insert(name='Alex')
3
>>> rows = db(db.person).select()
>>> for row in rows.find(lambda row: row.name[0]=='M'):
...     print row.name
...
Max
>>> len(rows)
3
>>> for row in rows.exclude(lambda row: row.name[0]=='M'):
...     print row.name
...
Max
>>> len(rows)
2
>>> for row in rows.sort(lambda row: row.name):
...     print row.name
...
Alex
John





They can be combined:

>>> rows = db(db.person).select()
>>> rows = rows.find(lambda row: 'x' in row.name).sort(lambda row: row.name)
>>> for row in rows:
...     print row.name
...
Alex
Max





Sort takes an optional argument reverse=True with the obvious
meaning.

The find method has an optional limitby argument with the same
syntax and functionality as the Set select method.






Other methods


update_or_insert

Some times you need to perform an insert only if there is no record with
the same values as those being inserted. This can be done with

db.define_table('person',
                Field('name'),
                Field('birthplace'))

db.person.update_or_insert(name='John', birthplace='Chicago')





The record will be inserted only if there is no other user called John
born in Chicago.

You can specify which values to use as a key to determine if the record
exists. For example:

db.person.update_or_insert(db.person.name == 'John',
                           name='John',
                           birthplace='Chicago')





and if there is John his birthplace will be updated else a new record
will be created.

The selection criteria in the example above is a single field. It can
also be a query, such as

db.person.update_or_insert((db.person.name == 'John') & (db.person.birthplace == 'Chicago'),
                           name='John',
                           birthplace='Chicago',
                           pet='Rover')








validate_and_insert, validate_and_update

The function

ret = db.mytable.validate_and_insert(field='value')





works very much like

id = db.mytable.insert(field='value')





except that it calls the validators for the fields before performing the
insert and bails out if the validation does not pass. If validation does
not pass the errors can be found in ret.errors. ret.errors holds
a key-value mapping where each key is the field name whose validation
failed, and the value of the key is the result from the validation error
(much like form.errors). If it passes, the id of the new record is
in ret.id. Mind that normally validation is done by the form
processing logic so this function is rarely needed.

Similarly

ret = db(query).validate_and_update(field='value')





works very much the same as

num = db(query).update(field='value')





except that it calls the validators for the fields before performing the
update. Notice that it only works if query involves a single table. The
number of updated records can be found in ret.updated and errors
will be in ret.errors.






Computed fields

DAL fields may have a compute attribute. This must be a function (or
lambda) that takes a Row object and returns a value for the field. When
a new record is modified, including both insertions and updates, if a
value for the field is not provided, py4web tries to compute from the
other field values using the compute function. Here is an example:

>>> db.define_table('item',
...                 Field('unit_price', 'double'),
...                 Field('quantity', 'integer'),
...                 Field('total_price',
...                       compute=lambda r: r['unit_price'] * r['quantity']))
<Table item (id, unit_price, quantity, total_price)>
>>> rid = db.item.insert(unit_price=1.99, quantity=5)
>>> db.item[rid]
<Row {'total_price': '9.95', 'unit_price': 1.99, 'id': 1L, 'quantity': 5L}>





Notice that the computed value is stored in the db and it is not
computed on retrieval, as in the case of virtual fields, described next.
Two typical applications of computed fields are: - in wiki applications,
to store the processed input wiki text as HTML, to avoid re-processing
on every request - for searching, to compute normalized values for a
field, to be used for searching.

Computed fields are evaluated in the order in which they are defined in
the table definition. A computed field can refer to previously defined
computed fields (new after v 2.5.1)




Virtual fields

Virtual fields are also computed fields (as in the previous subsection)
but they differ from those because they are virtual in the sense that
they are not stored in the db and they are computed each time records
are extracted from the database. They can be used to simplify the user’s
code without using additional storage but they cannot be used for
searching.


New style virtual fields (experimental)

py4web provides a new and easier way to define virtual fields and lazy
virtual fields. This section is marked experimental because the APIs may
still change a little from what is described here.

Here we will consider the same example as in the previous subsection. In
particular we consider the following model:

db.define_table('item',
                Field('unit_price', 'double'),
                Field('quantity', 'integer'))





One can define a total_price virtual field as

db.item.total_price = Field.Virtual(lambda row: row.item.unit_price * row.item.quantity)





i.e. by simply defining a new field total_price to be a
Field.Virtual. The only argument of the constructor is a function
that takes a row and returns the computed values.

A virtual field defined as the one above is automatically computed for
all records when the records are selected:

for row in db(db.item).select():
    print row.total_price





It is also possible to define method fields which are calculated
on-demand, when called. For example:

db.item.discounted_total = \\
    Field.Method(lambda row, discount=0.0:
                 row.item.unit_price * row.item.quantity * (100.0 - discount / 100))





In this case row.discounted_total is not a value but a function. The
function takes the same arguments as the function passed to the
Method constructor except for row which is implicit (think of it
as self for objects).

The lazy field in the example above allows one to compute the total
price for each item:

for row in db(db.item).select(): print row.discounted_total()





And it also allows to pass an optional discount percentage (say
15%):

for row in db(db.item).select(): print row.discounted_total(15)





Virtual and Method fields can also be defined in place when a table is
defined:

db.define_table('item',
                Field('unit_price', 'double'),
                Field('quantity', 'integer'),
                Field.Virtual('total_price', lambda row: ...),
                Field.Method('discounted_total', lambda row, discount=0.0: ...))






Mind that virtual fields do not have the same attributes as regular
fields (length, default, required, etc). They do not appear in the
list of db.table.fields and in older versions of py4web they
require a special approach to display in SQLFORM.grid and
SQLFORM.smartgrid. See the discussion on grids and virtual fields in
Chapter 7 ../07 .







Old style virtual fields

In order to define one or more virtual fields, you can also define a
container class, instantiate it and link it to a table or to a select.
For example, consider the following table:

db.define_table('item',
                Field('unit_price', 'double'),
                Field('quantity', 'integer'))





One can define a total_price virtual field as

class MyVirtualFields(object):
    def total_price(self):
        return self.item.unit_price * self.item.quantity

db.item.virtualfields.append(MyVirtualFields())





Notice that each method of the class that takes a single argument (self)
is a new virtual field. self refers to each one row of the select.
Field values are referred by full path as in self.item.unit_price.
The table is linked to the virtual fields by appending an instance of
the class to the table’s virtualfields attribute.

Virtual fields can also access recursive fields as in

db.define_table('item',
                Field('unit_price', 'double'))

db.define_table('order_item',
                Field('item', 'reference item'),
                Field('quantity', 'integer'))

class MyVirtualFields(object):
    def total_price(self):
        return self.order_item.item.unit_price * self.order_item.quantity

db.order_item.virtualfields.append(MyVirtualFields())





Notice the recursive field access self.order_item.item.unit_price
where self is the looping record.

They can also act on the result of a JOIN

rows = db(db.order_item.item == db.item.id).select()

class MyVirtualFields(object):
    def total_price(self):
        return self.item.unit_price * self.order_item.quantity

rows.setvirtualfields(order_item=MyVirtualFields())

for row in rows:
    print row.order_item.total_price





Notice how in this case the syntax is different. The virtual field
accesses both self.item.unit_price and self.order_item.quantity
which belong to the join select. The virtual field is attached to the
rows of the table using the setvirtualfields method of the rows
object. This method takes an arbitrary number of named arguments and can
be used to set multiple virtual fields, defined in multiple classes, and
attach them to multiple tables:

class MyVirtualFields1(object):
    def discounted_unit_price(self):
        return self.item.unit_price * 0.90

class MyVirtualFields2(object):
    def total_price(self):
        return self.item.unit_price * self.order_item.quantity
    def discounted_total_price(self):
        return self.item.discounted_unit_price * self.order_item.quantity

rows.setvirtualfields(item=MyVirtualFields1(),
                      order_item=MyVirtualFields2())

for row in rows:
    print row.order_item.discounted_total_price





Virtual fields can be lazy; all they need to do is return a function
and access it by calling the function:

db.define_table('item',
                Field('unit_price', 'double'),
                Field('quantity', 'integer'))

class MyVirtualFields(object):
    def lazy_total_price(self):
        def lazy(self=self):
            return self.item.unit_price * self.item.quantity
        return lazy

db.item.virtualfields.append(MyVirtualFields())

for item in db(db.item).select():
    print item.lazy_total_price()





or shorter using a lambda function:

class MyVirtualFields(object):
    def lazy_total_price(self):
        return lambda self=self: self.item.unit_price * self.item.quantity










One to many relation

To illustrate how to implement one to many relations with the DAL,
define another table “thing” that refers to the table “person” which we
redefine here:

>>> db.define_table('person',
...                 Field('name'))
<Table person (id, name)>
>>> db.person.insert(name='Alex')
1
>>> db.person.insert(name='Bob')
2
>>> db.person.insert(name='Carl')
3
>>> db.define_table('thing',
...                 Field('name'),
...                 Field('owner_id', 'reference person'))
<Table thing (id, name, owner_id)>





Table “thing” has two fields, the name of the thing and the owner of the
thing. The “owner_id” field is a reference field, it is intended that
the field reference the other table by its id. A reference type can be
specified in two equivalent ways, either:
Field('owner_id', 'reference person'):python or:
Field('owner_id', db.person):python

The latter is always converted to the former. They are equivalent except
in the case of lazy tables, self references or other types of cyclic
references where the former notation is the only allowed notation.

Now, insert three things, two owned by Alex and one by Bob:

>>> db.thing.insert(name='Boat', owner_id=1)
1
>>> db.thing.insert(name='Chair', owner_id=1)
2
>>> db.thing.insert(name='Shoes', owner_id=2)
3





You can select as you did for any other table:

>>> for row in db(db.thing.owner_id == 1).select():
...     print row.name
...
Boat
Chair





Because a thing has a reference to a person, a person can have many
things, so a record of table person now acquires a new attribute thing,
which is a Set, that defines the things of that person. This allows
looping over all persons and fetching their things easily:

>>> for person in db().select(db.person.ALL):
...     print person.name
...     for thing in person.thing.select():
...         print '    ', thing.name
...
Alex
     Boat
     Chair
Bob
     Shoes
Carl






Inner joins

Another way to achieve a similar result is by using a join, specifically
an INNER JOIN. py4web performs joins automatically and transparently
when the query links two or more tables as in the following example:

>>> rows = db(db.person.id == db.thing.owner_id).select()
>>> for row in rows:
...     print row.person.name, 'has', row.thing.name
...
Alex has Boat
Alex has Chair
Bob has Shoes





Observe that py4web did a join, so the rows now contain two records, one
from each table, linked together. Because the two records may have
fields with conflicting names, you need to specify the table when
extracting a field value from a row. This means that while before you
could do:

row.name





and it was obvious whether this was the name of a person or a thing, in
the result of a join you have to be more explicit and say:

row.person.name





or:

row.thing.name





There is an alternative syntax for INNER JOINS:

>>> rows = db(db.person).select(join=db.thing.on(db.person.id == db.thing.owner_id))
>>> for row in rows:
...     print row.person.name, 'has', row.thing.name
...
Alex has Boat
Alex has Chair
Bob has Shoes





While the output is the same, the generated SQL in the two cases can be
different. The latter syntax removes possible ambiguities when the same
table is joined twice and aliased:

db.define_table('thing',
                Field('name'),
                Field('owner_id1', 'reference person'),
                Field('owner_id2', 'reference person'))

rows = db(db.person).select(
        join=[db.person.with_alias('owner_id1').on(db.person.id == db.thing.owner_id1),
              db.person.with_alias('owner_id2').on(db.person.id == db.thing.owner_id2)])





The value of join can be list of db.table.on(...) to join.




Left outer join

Notice that Carl did not appear in the list above because he has no
things. If you intend to select on persons (whether they have things or
not) and their things (if they have any), then you need to perform a
LEFT OUTER JOIN. This is done using the argument “left” of the select.
Here is an example:

>>> rows = db().select(db.person.ALL, db.thing.ALL,
...                    left=db.thing.on(db.person.id == db.thing.owner_id))
>>> for row in rows:
...     print row.person.name, 'has', row.thing.name
...
Alex has Boat
Alex has Chair
Bob has Shoes
Carl has None





where:

left = db.thing.on(...)





does the left join query. Here the argument of db.thing.on is the
condition required for the join (the same used above for the inner
join). In the case of a left join, it is necessary to be explicit about
which fields to select.

Multiple left joins can be combined by passing a list or tuple of
db.mytable.on(...) to the left parameter.




Grouping and counting

When doing joins, sometimes you want to group rows according to certain
criteria and count them. For example, count the number of things owned
by every person. py4web allows this as well. First, you need a count
operator. Second, you want to join the person table with the thing table
by owner. Third, you want to select all rows (person + thing), group
them by person, and count them while grouping:

>>> count = db.person.id.count()
>>> for row in db(db.person.id == db.thing.owner_id
...               ).select(db.person.name, count, groupby=db.person.name):
...     print row.person.name, row[count]
...
Alex 2
Bob 1





Notice the count operator (which is built-in) is used as a field.
The only issue here is in how to retrieve the information. Each row
clearly contains a person and the count, but the count is not a field of
a person nor is it a table. So where does it go? It goes into the
storage object representing the record with a key equal to the query
expression itself.

The count method of the Field object has an optional distinct
argument. When set to True it specifies that only distinct values of
the field in question are to be counted.






Many to many

In the previous examples, we allowed a thing to have one owner but one
person could have many things. What if Boat was owned by Alex and Curt?
This requires a many-to-many relation, and it is realized via an
intermediate table that links a person to a thing via an ownership
relation.

Here is how to do it:

>>> db.define_table('person',
...                 Field('name'))
<Table person (id, name)>
>>> db.person.bulk_insert([dict(name='Alex'), dict(name='Bob'), dict(name='Carl')])
[1, 2, 3]
>>> db.define_table('thing',
...                 Field('name'))
<Table thing (id, name)>
>>> db.thing.bulk_insert([dict(name='Boat'), dict(name='Chair'), dict(name='Shoes')])
[1, 2, 3]
>>> db.define_table('ownership',
...                 Field('person', 'reference person'),
...                 Field('thing', 'reference thing'))
<Table ownership (id, person, thing)>





the existing ownership relationship can now be rewritten as:

>>> db.ownership.insert(person=1, thing=1)  # Alex owns Boat
1
>>> db.ownership.insert(person=1, thing=2)  # Alex owns Chair
2
>>> db.ownership.insert(person=2, thing=3)  # Bob owns Shoes
3





Now you can add the new relation that Curt co-owns Boat:

>>> db.ownership.insert(person=3, thing=1)  # Curt owns Boat too
4





Because you now have a three-way relation between tables, it may be
convenient to define a new set on which to perform operations:

>>> persons_and_things = db((db.person.id == db.ownership.person) &
...                         (db.thing.id == db.ownership.thing))





Now it is easy to select all persons and their things from the new Set:

>>> for row in persons_and_things.select():
...     print row.person.name, 'has', row.thing.name
...
Alex has Boat
Alex has Chair
Bob has Shoes
Curt has Boat





Similarly, you can search for all things owned by Alex:

>>> for row in persons_and_things(db.person.name == 'Alex').select():
...     print row.thing.name
...
Boat
Chair





and all owners of Boat:

>>> for row in persons_and_things(db.thing.name == 'Boat').select():
...     print row.person.name
...
Alex
Curt





A lighter alternative to many-to-many relations is tagging, you can
found an example of this in the next section. Tagging works even on
database backends that do not support JOINs like the Google App Engine
NoSQL.




Tagging records

Tags allows to add or find properties attached to records in your
database.

from pydal import DAL, Field
from py4web.utils.tags import Tags

db = DAL("sqlite:memory")
db.define_table("thing", Field("name"))
properties = Tags(db.thing)
id1 = db.thing.insert(name="chair")
id2 = db.thing.insert(name="table")
properties.add(id1, "color/red")
properties.add(id1, "style/modern")
properties.add(id2, "color/green")
properties.add(id2, "material/wood")

self.assertTrue(properties.get(id1), ["color/red", "style/modern"])
self.assertTrue(properties.get(id2), ["color/green", "material/wood"])

rows = db(properties.find(["style/modern"])).select()
self.assertTrue(rows.first().id, id1)

rows = db(properties.find(["material/wood"])).select()
self.assertTrue(rows.first().id, id1)

rows = db(properties.find(["color"])).select()
self.assertTrue(len(rows), 2)





It is internally implemented as a table with name: tags, which in
this example would be db.thing_tags_default, because no path was
specified on the Tags(table, path=“default”) constructor

The find method is doing a search by startswith of the path
passed as parameter. Then find([“color”]) would return id1 and id2
because both records have tags starting with “color” You can find some
examples of record’s tagging in chapter
11, as py4web uses tags as a
flexible mechanism to manage permissions.




list:<type> and contains

py4web provides the following special field types:

list:string
list:integer
list:reference <table>





They can contain lists of strings, of integers and of references
respectively.

On Google App Engine NoSQL list:string is mapped into
StringListProperty, the other two are mapped into
ListProperty(int). On relational databases they are mapped into text
fields which contain the list of items separated by |. For example
[1, 2, 3] is mapped into |1|2|3|.

For lists of string the items are escaped so that any | in the item
is replaced by a ||. Anyway this is an internal representation and
it is transparent to the user.

You can use list:string, for example, in the following way:

>>> db.define_table('product',
...                 Field('name'),
...                 Field('colors', 'list:string'))
<Table product (id, name, colors)>
>>> db.product.colors.requires = IS_IN_SET(('red', 'blue', 'green'))
>>> db.product.insert(name='Toy Car', colors=['red', 'green'])
1
>>> products = db(db.product.colors.contains('red')).select()
>>> for item in products:
...     print item.name, item.colors
...
Toy Car ['red', 'green']





list:integer works in the same way but the items must be integers.

As usual the requirements are enforced at the level of forms, not at the
level of insert.


For list:<type> fields the contains(value) operator maps into
a non trivial query that checks for lists containing the value.
The contains operator also works for regular string and
text fields and it maps into a LIKE '%value%'.




The list:reference and the contains(value) operator are
particularly useful to de-normalize many-to-many relations. Here is an
example:

>>> db.define_table('tag',
...                 Field('name'),
...                 format='%(name)s')
<Table tag (id, name)>
>>> db.define_table('product',
...                 Field('name'),
...                 Field('tags', 'list:reference tag'))
<Table product (id, name, tags)>
>>> a = db.tag.insert(name='red')
>>> b = db.tag.insert(name='green')
>>> c = db.tag.insert(name='blue')
>>> db.product.insert(name='Toy Car', tags=[a, b, c])
1
>>> products = db(db.product.tags.contains(b)).select()
>>> for item in products:
...     print item.name, item.tags
...
Toy Car [1, 2, 3]
>>> for item in products:
...     print item.name, db.product.tags.represent(item.tags)
...
Toy Car red, green, blue





Notice that a list:reference tag field get a default constraint

requires = IS_IN_DB(db, db.tag._id, db.tag._format, multiple=True)





that produces a SELECT/OPTION multiple drop-box in forms.

Also notice that this field gets a default represent attribute which
represents the list of references as a comma-separated list of formatted
references. This is used in read forms.


While list:reference has a default validator and a default
representation, list:integer and list:string do not. So these
two need an IS_IN_SET or an IS_IN_DB validator if you want to
use them in forms.







Other operators

py4web has other operators that provide an API to access equivalent SQL
operators. Let’s define another table “log” to store security events,
their event_time and severity, where the severity is an integer number.

>>> db.define_table('log', Field('event'),
...                        Field('event_time', 'datetime'),
...                        Field('severity', 'integer'))
<Table log (id, event, event_time, severity)>





As before, insert a few events, a “port scan”, an “xss injection” and an
“unauthorized login”. For the sake of the example, you can log events
with the same event_time but with different severities (1, 2, and 3
respectively).

>>> import datetime
>>> now = datetime.datetime.now()
>>> db.log.insert(event='port scan', event_time=now, severity=1)
1
>>> db.log.insert(event='xss injection', event_time=now, severity=2)
2
>>> db.log.insert(event='unauthorized login', event_time=now, severity=3)
3






like, ilike, regexp, startswith, endswith, contains, upper, lower

Fields have a like operator that you can use to match strings:

>>> for row in db(db.log.event.like('port%')).select():
...     print row.event
...
port scan





Here “port%” indicates a string starting with “port”. The percent sign
character, “%”, is a wild-card character that means “any sequence of
characters”.

The like operator maps to the LIKE word in ANSI-SQL. LIKE is
case-sensitive in most databases, and depends on the collation of the
database itself. The like method is hence case-sensitive but it can
be made case-insensitive with

db.mytable.myfield.like('value', case_sensitive=False)





which is the same as using ilike

db.mytable.myfield.ilike('value')





py4web also provides some shortcuts:

db.mytable.myfield.startswith('value')
db.mytable.myfield.endswith('value')
db.mytable.myfield.contains('value')





which are roughly equivalent respectively to

db.mytable.myfield.like('value%')
db.mytable.myfield.like('%value')
db.mytable.myfield.like('%value%')





Remember that contains has a special meaning for list:<type>
fields, as discussed in previous list: and contains section.

The contains method can also be passed a list of values and an
optional boolean argument all to search for records that contain all
values:

db.mytable.myfield.contains(['value1', 'value2'], all=True)





or any value from the list

db.mytable.myfield.contains(['value1', 'value2'], all=False)





There is a also a regexp method that works like the like method
but allows regular expression syntax for the look-up expression. It is
only supported by MySQL, Oracle, PostgreSQL, SQLite, and MongoDB (with
different degree of support).

The upper and lower methods allow you to convert the value of
the field to upper or lower case, and you can also combine them with the
like operator:

>>> for row in db(db.log.event.upper().like('PORT%')).select():
...     print row.event
...
port scan








year, month, day, hour, minutes, seconds

The date and datetime fields have day, month and year
methods. The datetime and time fields have hour, minutes and
seconds methods. Here is an example:

>>> for row in db(db.log.event_time.year() > 2018).select():
...     print row.event
...
port scan
xss injection
unauthorized login








belongs

The SQL IN operator is realized via the belongs method which returns
true when the field value belongs to the specified set (list or tuples):

>>> for row in db(db.log.severity.belongs((1, 2))).select():
...     print row.event
...
port scan
xss injection





The DAL also allows a nested select as the argument of the belongs
operator. The only caveat is that the nested select has to be a
_select, not a select, and only one field has to be selected
explicitly, the one that defines the set.

>>> bad_days = db(db.log.severity == 3)._select(db.log.event_time)
>>> for row in db(db.log.event_time.belongs(bad_days)).select():
...     print row.severity, row.event
...
1 port scan
2 xss injection
3 unauthorized login





In those cases where a nested select is required and the look-up field
is a reference we can also use a query as argument. For example:

db.define_table('person', Field('name'))
db.define_table('thing',
                Field('name'),
                Field('owner_id', 'reference person'))

db(db.thing.owner_id.belongs(db.person.name == 'Jonathan')).select()





In this case it is obvious that the nested select only needs the field
referenced by the db.thing.owner_id field so we do not need the more
verbose _select notation.

A nested select can also be used as insert/update value but in this case
the syntax is different:

lazy = db(db.person.name == 'Jonathan').nested_select(db.person.id)

db(db.thing.id == 1).update(owner_id = lazy)





In this case lazy is a nested expression that computes the id of
person “Jonathan”. The two lines result in one single SQL query.




sum, avg, min, max and len

Previously, you have used the count operator to count records.
Similarly, you can use the sum operator to add (sum) the values of a
specific field from a group of records. As in the case of count, the
result of a sum is retrieved via the storage object:

>>> sum = db.log.severity.sum()
>>> print db().select(sum).first()[sum]
6





You can also use avg, min, and max to the average, minimum,
and maximum value respectively for the selected records. For example:

>>> max = db.log.severity.max()
>>> print db().select(max).first()[max]
3





len computes the length of field’s value. It is generally used on
string or text fields but depending on the back-end it may still work
for other types too (boolean, integer, etc).

>>> for row in db(db.log.event.len() > 13).select():
...     print row.event
...
unauthorized login





Expressions can be combined to form more complex expressions. For
example here we are computing the sum of the length of the event strings
in the logs plus one:

>>> exp = (db.log.event.len() + 1).sum()
>>> db().select(exp).first()[exp]
43








Substrings

One can build an expression to refer to a substring. For example, we can
group things whose name starts with the same three characters and select
only one from each group:

db(db.thing).select(distinct = db.thing.name[:3])








Default values with coalesce and coalesce_zero

There are times when you need to pull a value from database but also
need a default values if the value for a record is set to NULL. In SQL
there is a function, COALESCE, for this. py4web has an equivalent
coalesce method:

>>> db.define_table('sysuser', Field('username'), Field('fullname'))
<Table sysuser (id, username, fullname)>
>>> db.sysuser.insert(username='max', fullname='Max Power')
1
>>> db.sysuser.insert(username='tim', fullname=None)
2
>>> coa = db.sysuser.fullname.coalesce(db.sysuser.username)
>>> for row in db().select(coa):
...     print row[coa]
...
Max Power
tim





Other times you need to compute a mathematical expression but some
fields have a value set to None while it should be zero.
coalesce_zero comes to the rescue by defaulting None to zero in the
query:

>>> db.define_table('sysuser', Field('username'), Field('points'))
<Table sysuser (id, username, points)>
>>> db.sysuser.insert(username='max', points=10)
1
>>> db.sysuser.insert(username='tim', points=None)
2
>>> exp = db.sysuser.points.coalesce_zero().sum()
>>> db().select(exp).first()[exp]
10
>>> type(exp)
<class 'pydal.objects.Expression'>
>>> print exp
SUM(COALESCE("sysuser"."points",'0'))










Generating raw sql

Sometimes you need to generate the SQL but not execute it. This is easy
to do with py4web since every command that performs database IO has an
equivalent command that does not, and simply returns the SQL that would
have been executed. These commands have the same names and syntax as the
functional ones, but they start with an underscore:

Here is _insert

>>> print db.person._insert(name='Alex')
INSERT INTO "person"("name") VALUES ('Alex');





Here is _count

>>> print db(db.person.name == 'Alex')._count()
SELECT COUNT(*) FROM "person" WHERE ("person"."name" = 'Alex');





Here is _select

>>> print db(db.person.name == 'Alex')._select()
SELECT "person"."id", "person"."name" FROM "person" WHERE ("person"."name" = 'Alex');





Here is _delete

>>> print db(db.person.name == 'Alex')._delete()
DELETE FROM "person" WHERE ("person"."name" = 'Alex');





And finally, here is _update

>>> print db(db.person.name == 'Alex')._update(name='Susan')
UPDATE "person" SET "name"='Susan' WHERE ("person"."name" = 'Alex');






Moreover you can always use db._lastsql to return the most recent
SQL code, whether it was executed manually using executesql or was
SQL generated by the DAL.







Exporting and importing data


CSV (one Table at a time)

When a Rows object is converted to a string it is automatically
serialized in CSV:

>>> rows = db(db.person.id == db.thing.owner_id).select()
>>> print rows
person.id,person.name,thing.id,thing.name,thing.owner_id
1,Alex,1,Boat,1
1,Alex,2,Chair,1
2,Bob,3,Shoes,2





You can serialize a single table in CSV and store it in a file
“test.csv”:

with open('test.csv', 'wb') as dumpfile:
    dumpfile.write(str(db(db.person).select()))






Notice that converting a Rows object into a string using Python 2
produces an utf8 encoded binary string. To obtain a different
encoding you have to ask for it explicitly, for example with:




unicode(str(db(db.person).select()), 'utf8').encode(...):pythonn

Or in Python 3:

with open('test.csv', 'w', encoding='utf-8', newline='') as dumpfile:
    dumpfile.write(str(db(db.person).select()))





This is equivalent to

rows = db(db.person).select()
with open('test.csv', 'wb') as dumpfile:
    rows.export_to_csv_file(dumpfile)





You can read the CSV file back with:

with open('test.csv', 'rb') as dumpfile:
    db.person.import_from_csv_file(dumpfile)





Again, when using Python 3, you can be explict about the encoding for
the exporting file:

rows = db(db.person).select()
with open('test.csv', 'w', encoding='utf-8', newline='') as dumpfile:
    rows.export_to_csv_file(dumpfile)





and the importing one:

with open('test.csv', 'r', encoding='utf-8', newline='') as dumpfile:
    db.person.import_from_csv_file(dumpfile)





When importing, py4web looks for the field names in the CSV header. In
this example, it finds two columns: “person.id” and “person.name”. It
ignores the “person.” prefix, and it ignores the “id” fields. Then all
records are appended and assigned new ids. Both of these operations can
be performed via the appadmin web interface.




CSV (all tables at once)

In py4web, you can backup/restore an entire database with two commands:

To export:

with open('somefile.csv', 'wb') as dumpfile:
    db.export_to_csv_file(dumpfile)





To import:

with open('somefile.csv', 'rb') as dumpfile:
    db.import_from_csv_file(dumpfile)





Or in Python 3:

To export:

with open('somefile.csv', 'w', encoding='utf-8', newline='') as dumpfile:
    db.export_to_csv_file(dumpfile)





To import:

with open('somefile.csv', 'r', encoding='utf-8', newline='') as dumpfile:
    db.import_from_csv_file(dumpfile)





This mechanism can be used even if the importing database is of a
different type than the exporting database.

The data is stored in “somefile.csv” as a CSV file where each table
starts with one line that indicates the tablename, and another line with
the fieldnames:

TABLE tablename
field1,field2,field3,...





Two tables are separated by \r\n\r\n (that is two empty lines). The
file ends with the line

END





The file does not include uploaded files if these are not stored in the
database. The upload files stored on filesystem must be dumped
separately, a zip of the “uploads” folder may suffice in most cases.

When importing, the new records will be appended to the database if it
is not empty. In general the new imported records will not have the same
record id as the original (saved) records but py4web will restore
references so they are not broken, even if the id values may change.

If a table contains a field called uuid, this field will be used to
identify duplicates. Also, if an imported record has the same uuid
as an existing record, the previous record will be updated.




CSV and remote database synchronization

Consider once again the following model:

db.define_table('person',
                Field('name'))

db.define_table('thing',
                Field('name'),
                Field('owner_id', 'reference person'))

# usage example
if db(db.person).isempty():
    nid = db.person.insert(name='Massimo')
    db.thing.insert(name='Chair', owner_id=nid)





Each record is identified by an identifier and referenced by that id. If
you have two copies of the database used by distinct py4web
installations, the id is unique only within each database and not across
the databases. This is a problem when merging records from different
databases.

In order to make records uniquely identifiable across databases, they
must: - have a unique id (UUID), - have a last modification time to
track the most recent among multiple copies, - reference the UUID
instead of the id.

This can be achieved changing the above model into:

import uuid

db.define_table('person',
                Field('uuid', length=64),
                Field('modified_on', 'datetime', default=request.now, update=request.now),
                Field('name'))

db.define_table('thing',
                Field('uuid', length=64),
                Field('modified_on', 'datetime', default=request.now, update=request.now),
                Field('name'),
                Field('owner_id', length=64))

db.person.uuid.default = db.thing.uuid.default = lambda:str(uuid.uuid4())

db.thing.owner_id.requires = IS_IN_DB(db, 'person.uuid', '%(name)s')

# usage example
if db(db.person).isempty():
    nid = str(uuid.uuid4())
    db.person.insert(uuid=nid, name='Massimo')
    db.thing.insert(name='Chair', owner_id=nid)






Notice that in the above table definitions, the default value for the
two uuid fields is set to a lambda function, which returns a UUID
(converted to a string). The lambda function is called once for each
record inserted, ensuring that each record gets a unique UUID, even
if multiple records are inserted in a single transaction.




Create a controller action to export the database:

def export():
    s = StringIO.StringIO()
    db.export_to_csv_file(s)
    response.headers['Content-Type'] = 'text/csv'
    return s.getvalue()





Create a controller action to import a saved copy of the other database
and sync records:

from yatl.helpers import FORM, INPUT

def import_and_sync():
    form = FORM(INPUT(_type='file', _name='data'), INPUT(_type='submit'))
    if form.process().accepted:
        db.import_from_csv_file(form.vars.data.file, unique=False)
        # for every table
        for tablename in db.tables:
            table = db[tablename]
            # for every uuid, delete all but the latest
            items = db(table).select(table.id, table.uuid,
                                     orderby=~table.modified_on,
                                     groupby=table.uuid)
            for item in items:
                db((table.uuid == item.uuid) & (table.id != item.id)).delete()
    return dict(form=form)





Optionally you should create an index manually to make the search by
uuid faster.

Alternatively, you can use XML-RPC to export/import the file.

If the records reference uploaded files, you also need to export/import
the content of the uploads folder. Notice that files therein are already
labeled by UUIDs so you do not need to worry about naming conflicts and
references.




HTML and XML (one Table at a time)

Rows objects also have an xml method (like helpers) that serializes
it to XML/HTML:

>>> rows = db(db.person.id == db.thing.owner_id).select()
>>> print rows.xml()





<table>
<thead>
<tr><th>person.id</th><th>person.name</th>
    <th>thing.id</th><th>thing.name</th>
    <th>thing.owner_id</th>
</tr>
</thead>
<tbody>
<tr class="w2p_odd odd">
    <td>1</td><td>Alex</td>
    <td>1</td><td>Boat</td>
    <td>1</td>
</tr>
<tr class="w2p_even even">
    <td>1</td><td>Alex</td>
    <td>2</td><td>Chair</td>
    <td>1</td>
</tr>
<tr class="w2p_odd odd">
    <td>2</td><td>Bob</td>
    <td>3</td>
    <td>Shoes</td>
    <td>2</td>
</tr>
</tbody>
</table>





If you need to serialize the Rows in any other XML format with custom
tags, you can easily do that using the universal TAG helper
(described in Chapter 8 and the Python syntax
*<iterable> allowed in function calls:

>>> rows = db(db.person).select()
>>> print TAG.result(*[TAG.row(*[TAG.field(r[f], _name=f) for f in db.person.fields]) for r in rows])





<result>
<row><field name="id">1</field><field name="name">Alex</field></row>
<row><field name="id">2</field><field name="name">Bob</field></row>
<row><field name="id">3</field><field name="name">Carl</field></row>
</result>








Data representation

The Rows.export_to_csv_file method accepts a keyword argument named
represent. When True it will use the columns represent
function while exporting the data instead of the raw data.

The function also accepts a keyword argument named colnames that
should contain a list of column names one wish to export. It defaults to
all columns.

Both export_to_csv_file and import_from_csv_file accept keyword
arguments that tell the csv parser the format to save/load the files: -
delimiter: delimiter to separate values (default ‘,’) -
quotechar: character to use to quote string values (default to
double quotes) - quoting: quote system (default
csv.QUOTE_MINIMAL)

Here is some example usage:

import csv
rows = db(query).select()
with open('/tmp/test.txt', 'wb') as oufile:
    rows.export_to_csv_file(oufile,
                            delimiter='|',
                            quotechar='"',
                            quoting=csv.QUOTE_NONNUMERIC)





Which would render something similar to

"hello"|35|"this is the text description"|"2013-03-03"





For more information consult the official Python documentation






Caching selects

The select method also takes a cache argument, which defaults to
None. For caching purposes, it should be set to a tuple where the first
element is the cache model (cache.ram, cache.disk, etc.), and
the second element is the expiration time in seconds.

In the following example, you see a controller that caches a select on
the previously defined db.log table. The actual select fetches data from
the back-end database no more frequently than once every 60 seconds and
stores the result in memory. If the next call to this controller occurs
in less than 60 seconds since the last database IO, it simply fetches
the previous data from memory.

def cache_db_select():
    logs = db().select(db.log.ALL, cache=(cache.ram, 60))
    return dict(logs=logs)





The select method has an optional cacheable argument, normally
set to False. When cacheable=True the resulting Rows is
serializable but The Rows lack update_record and
delete_record methods.

If you do not need these methods you can speed up selects a lot by
setting the cacheable attribute:

rows = db(query).select(cacheable=True)





When the cache argument is set but cacheable=False (default)
only the database results are cached, not the actual Rows object. When
the cache argument is used in conjunction with cacheable=True
the entire Rows object is cached and this results in much faster
caching:

rows = db(query).select(cache=(cache.ram, 3600), cacheable=True)








Self-Reference and aliases

It is possible to define tables with fields that refer to themselves,
here is an example:

db.define_table('person',
                Field('name'),
                Field('father_id', 'reference person'),
                Field('mother_id', 'reference person'))





Notice that the alternative notation of using a table object as field
type will fail in this case, because it uses a table before it is
defined:

db.define_table('person',
                Field('name'),
                Field('father_id', db.person),  # wrong!
                Field('mother_id', db['person']))  # wrong!





In general db.tablename and 'reference tablename' are equivalent
field types, but the latter is the only one allowed for self-references.

When a table has a self-reference and you have to do join, for example
to select a person and its father, you need an alias for the table. In
SQL an alias is a temporary alternate name you can use to reference a
table/column into a query (or other SQL statement).

With py4web you can make an alias for a table using the with_alias
method. This works also for expressions, which means also for fields
since Field is derived from Expression.

Here is an example:

>>> fid, mid = db.person.bulk_insert([dict(name='Massimo'), dict(name='Claudia')])
>>> db.person.insert(name='Marco', father_id=fid, mother_id=mid)
3
>>> Father = db.person.with_alias('father')
>>> Mother = db.person.with_alias('mother')
>>> type(Father)
<class 'pydal.objects.Table'>
>>> str(Father)
'person AS father'
>>> rows = db().select(db.person.name, Father.name, Mother.name,
...                    left=(Father.on(Father.id == db.person.father_id),
...                          Mother.on(Mother.id == db.person.mother_id)))
>>> for row in rows:
...     print row.person.name, row.father.name, row.mother.name
...
Massimo None None
Claudia None None
Marco Massimo Claudia





Notice that we have chosen to make a distinction between: - “father_id”:
the field name used in the table “person”; - “father”: the alias we want
to use for the table referenced by the above field; this is communicated
to the database; - “Father”: the variable used by py4web to refer to
that alias.

The difference is subtle, and there is nothing wrong in using the same
name for the three of them:

>>> db.define_table('person',
...                 Field('name'),
...                 Field('father', 'reference person'),
...                 Field('mother', 'reference person'))
<Table person (id, name, father, mother)>
>>> fid, mid = db.person.bulk_insert([dict(name='Massimo'), dict(name='Claudia')])
>>> db.person.insert(name='Marco', father=fid, mother=mid)
3
>>> father = db.person.with_alias('father')
>>> mother = db.person.with_alias('mother')
>>> rows = db().select(db.person.name, father.name, mother.name,
...                    left=(father.on(father.id==db.person.father),
...                          mother.on(mother.id==db.person.mother)))
>>> for row in rows:
...     print row.person.name, row.father.name, row.mother.name
...
Massimo None None
Claudia None None
Marco Massimo Claudia





But it is important to have the distinction clear in order to build
correct queries.




Advanced features


Table inheritance

It is possible to create a table that contains all the fields from
another table. It is sufficient to pass the other table in place of a
field to define_table. For example

>>> db.define_table('person', Field('name'), Field('gender'))
<Table person (id, name, gender)>
>>> db.define_table('doctor', db.person, Field('specialization'))
<Table doctor (id, name, gender, specialization)>





It is also possible to define a dummy table that is not stored in a
database in order to reuse it in multiple other places. For example:

signature = db.Table(db, 'signature',
                     Field('is_active', 'boolean', default=True),
                     Field('created_on', 'datetime', default=request.now),
                     Field('created_by', db.auth_user, default=auth.user_id),
                     Field('modified_on', 'datetime', update=request.now),
                     Field('modified_by', db.auth_user, update=auth.user_id))

db.define_table('payment', Field('amount', 'double'), signature)





This example assumes that standard py4web authentication is enabled.

Notice that if you use Auth py4web already creates one such table
for you:

auth = Auth(db)
db.define_table('payment', Field('amount', 'double'), auth.signature)





When using table inheritance, if you want the inheriting table to
inherit validators, be sure to define the validators of the parent table
before defining the inheriting table.




filter_in and filter_out

It is possible to define a filter for each field to be called before a
value is inserted into the database for that field and after a value is
retrieved from the database.

Imagine for example that you want to store a serializable Python data
structure in a field in the json format. Here is how it could be
accomplished:

>>> import json
>>> db.define_table('anyobj',
...                 Field('name'),
...                 Field('data', 'text'))
<Table anyobj (id, name, data)>
>>> db.anyobj.data.filter_in = lambda obj: json.dumps(obj)
>>> db.anyobj.data.filter_out = lambda txt: json.loads(txt)
>>> myobj = ['hello', 'world', 1, {2: 3}]
>>> aid = db.anyobj.insert(name='myobjname', data=myobj)
>>> row = db.anyobj[aid]
>>> row.data
['hello', 'world', 1, {'2': 3}]





Another way to accomplish the same is by using a Field of type
SQLCustomType, as discussed in next Custom ``Field`
types <#Custom_Field_Types>`__ section.




callbacks on record insert, delete and update

PY4WEB provides a mechanism to register callbacks to be called before
and/or after insert, update and delete of records.

Each table stores six lists of callbacks:

db.mytable._before_insert
db.mytable._after_insert
db.mytable._before_update
db.mytable._after_update
db.mytable._before_delete
db.mytable._after_delete





You can register a callback function by appending it to the
corresponding list. The caveat is that depending on the functionality,
the callback has different signature.

This is best explained via some examples.

>>> db.define_table('person', Field('name'))
<Table person (id, name)>
>>> def pprint(callback, *args):
...     print "%s%s" % (callback, args)
...
>>> db.person._before_insert.append(lambda f: pprint('before_insert', f))
>>> db.person._after_insert.append(lambda f, i: pprint('after_insert', f, i))
>>> db.person.insert(name='John')
before_insert(<OpRow {'name': 'John'}>,)
after_insert(<OpRow {'name': 'John'}>, 1L)
1L
>>> db.person._before_update.append(lambda s, f: pprint('before_update', s, f))
>>> db.person._after_update.append(lambda s, f: pprint('after_update', s, f))
>>> db(db.person.id == 1).update(name='Tim')
before_update(<Set ("person"."id" = 1)>, <OpRow {'name': 'Tim'}>)
after_update(<Set ("person"."id" = 1)>, <OpRow {'name': 'Tim'}>)
1
>>> db.person._before_delete.append(lambda s: pprint('before_delete', s))
>>> db.person._after_delete.append(lambda s: pprint('after_delete', s))
>>> db(db.person.id == 1).delete()
before_delete(<Set ("person"."id" = 1)>,)
after_delete(<Set ("person"."id" = 1)>,)
1





As you can see: - f gets passed the OpRow object with data for
insert or update. - i gets passed the id of the newly inserted
record. - s gets passed the Set object used for update or
delete. OpRow is an helper object specialized in storing (field,
value) pairs, you can think of it as a normal dictionary that you can
use even with the syntax of attribute notation (that is f.name and
f['name'] are equivalent).

The return values of these callback should be None or False. If
any of the _before_* callback returns a True value it will abort
the actual insert/update/delete operation.

Some times a callback may need to perform an update in the same or a
different table and one wants to avoid firing other callbacks, which
could cause an infinite loop.

For this purpose there the Set objects have an update_naive
method that works like update but ignores before and after
callbacks.


Database cascades

Database schema can define relationships which trigger deletions of
related records, known as cascading. The DAL is not informed when a
record is deleted due to a cascade. So no *_delete callaback will ever
be called as conseguence of a cascade-deletion.






Record versioning

It is possible to ask py4web to save every copy of a record when the
record is individually modified. There are different ways to do it and
it can be done for all tables at once using the syntax:

auth.enable_record_versioning(db)





this requires Auth. It can also be done for each individual table as
discussed below.

Consider the following table:

db.define_table('stored_item',
                Field('name'),
                Field('quantity', 'integer'),
                Field('is_active', 'boolean',
                      writable=False, readable=False, default=True))





Notice the hidden boolean field called is_active and defaulting to
True.

We can tell py4web to create a new table (in the same or a different
database) and store all previous versions of each record in the table,
when modified.

This is done in the following way:

db.stored_item._enable_record_versioning()





or in a more verbose syntax:

db.stored_item._enable_record_versioning(archive_db=db,
                                         archive_name='stored_item_archive',
                                         current_record='current_record',
                                         is_active='is_active')





The archive_db=db tells py4web to store the archive table in the
same database as the stored_item table. The archive_name sets
the name for the archive table. The archive table has the same fields as
the original table stored_item except that unique fields are no
longer unique (because it needs to store multiple versions) and has an
extra field which name is specified by current_record and which is a
reference to the current record in the stored_item table.

When records are deleted, they are not really deleted. A deleted record
is copied in the stored_item_archive table (like when it is
modified) and the is_active field is set to False. By enabling
record versioning py4web sets a common_filter on this table that
hides all records in table stored_item where the is_active field
is set to False. The is_active parameter in the
_enable_record_versioning method allows to specify the name of the
field used by the common_filter to determine if the field was
deleted or not.

common_filters will be discussed in next Common
filters section.




Common fields and multi-tenancy

db._common_fields is a list of fields that should belong to all the
tables. This list can also contain tables and it is understood as all
fields from the table.

For example occasionally you find yourself in need to add a signature to
all your tables but the Auth tables. In this case, after you
auth.define_tables() but before defining any other table, insert:

db._common_fields.append(auth.signature)





One field is special: request_tenant, you can set a different name
in db._request_tenant. This field does not exist but you can create
it and add it to any of your tables (or all of them):

db._common_fields.append(Field('request_tenant',
                               default=request.env.http_host,
                               writable=False))





For every table with such a field, all records for all queries are
always automatically filtered by:

db.table.request_tenant == db.table.request_tenant.default





and for every record inserted, this field is set to the default value.
In the example above we have chosen:

default = request.env.http_host





this means we have chosen to ask our app to filter all tables in all
queries with:

db.table.request_tenant == request.env.http_host





This simple trick allow us to turn any application into a multi-tenant
application. Even though we run one instance of the application and we
use one single database, when the application is accessed under two or
more domains the visitors will see different data depending on the
domain (in the example the domain name is retrieved from
request.env.http_host).

You can turn off multi tenancy filters using
ignore_common_filters=True at Set creation time:

db(query, ignore_common_filters=True)








Common filters

A common filter is a generalization of the above multi-tenancy idea. It
provides an easy way to prevent repeating of the same query. Consider
for example the following table:

db.define_table('blog_post',
                Field('subject'),
                Field('post_text', 'text'),
                Field('is_public', 'boolean'),
                common_filter = lambda query: db.blog_post.is_public == True)





Any select, delete or update in this table, will include only public
blog posts. The attribute can also be modified at runtime:

db.blog_post._common_filter = lambda query: ...





It serves both as a way to avoid repeating the
“db.blog_post.is_public==True” phrase in each blog post search, and also
as a security enhancement, that prevents you from forgetting to disallow
viewing of non-public posts.

In case you actually do want items left out by the common filter (for
example, allowing the admin to see non-public posts), you can either
remove the filter:

db.blog_post._common_filter = None





or ignore it:

db(query, ignore_common_filters=True)






Note that common_filters are ignored by the appadmin interface.







Custom Field types

Aside for using filter_in and filter_out, it is possible to
define new/custom field types. For example, suppose that you want to
define a custom type to store an IP address:

>>> def ip2int(sv):
...     "Convert an IPV4 to an integer."
...     sp = sv.split('.'); assert len(sp) == 4 # IPV4 only
...     iip = 0
...     for i in map(int, sp): iip = (iip<<8) + i
...     return iip
...
>>> def int2ip(iv):
...     "Convert an integer to an IPV4."
...     assert iv > 0
...     iv = (iv,); ov = []
...     for i in range(3):
...         iv = divmod(iv[0], 256)
...         ov.insert(0, iv[1])
...     ov.insert(0, iv[0])
...     return '.'.join(map(str, ov))
...
>>> from gluon.dal import SQLCustomType
>>> ipv4 = SQLCustomType(type='string', native='integer',
...                      encoder=lambda x : str(ip2int(x)), decoder=int2ip)
>>> db.define_table('website',
...                 Field('name'),
...                 Field('ipaddr', type=ipv4))
<Table website (id, name, ipaddr)>
>>> db.website.insert(name='wikipedia', ipaddr='91.198.174.192')
1
>>> db.website.insert(name='google', ipaddr='172.217.11.174')
2
>>> db.website.insert(name='youtube', ipaddr='74.125.65.91')
3
>>> db.website.insert(name='github', ipaddr='207.97.227.239')
4
>>> rows = db(db.website.ipaddr > '100.0.0.0').select(orderby=~db.website.ipaddr)
>>> for row in rows:
...     print row.name, row.ipaddr
...
github 207.97.227.239
google 172.217.11.174





SQLCustomType is a field type factory. Its type argument must be
one of the standard py4web types. It tells py4web how to treat the field
values at the py4web level. native is the type of the field as far
as the database is concerned. Allowed names depend on the database
engine. encoder is an optional transformation function applied when
the data is stored and decoder is the optional reverse
transformation function.


This feature is marked as experimental. In practice it has been in
py4web for a long time and it works but it can make the code not
portable, for example when the native type is database specific.




It does not work on Google App Engine NoSQL.




Using DAL without define tables

The DAL can be used from any Python program simply by doing this:

from gluon import DAL
db = DAL('sqlite://storage.sqlite', folder='path/to/app/databases')





i.e. import the DAL, connect and specify the folder which contains the
.table files (the app/databases folder).

To access the data and its attributes we still have to define all the
tables we are going to access with db.define_table.

If we just need access to the data but not to the py4web table
attributes, we get away without re-defining the tables but simply asking
py4web to read the necessary info from the metadata in the .table files:

from gluon import DAL
db = DAL('sqlite://storage.sqlite', folder='path/to/app/databases', auto_import=True)





This allows us to access any db.table without need to re-define it.




PostGIS, SpatiaLite, and MS Geo (experimental)

The DAL supports geographical APIs using PostGIS (for PostgreSQL),
SpatiaLite (for SQLite), and MSSQL and Spatial Extensions. This is a
feature that was sponsored by the Sahana project and implemented by
Denes Lengyel.

DAL provides geometry and geography fields types and the following
functions:

st_asgeojson (PostGIS only)
st_astext
st_contains
st_distance
st_equals
st_intersects
st_overlaps
st_simplify (PostGIS only)
st_touches
st_within
st_x
st_y





Here are some examples:

>>> from gluon.dal import DAL, Field, geoPoint, geoLine, geoPolygon
>>> db = DAL("mssql://user:pass@host/db")
>>> sp = db.define_table('spatial', Field('loc', 'geometry()'))





Below we insert a point, a line, and a polygon:

>>> sp.insert(loc=geoPoint(1, 1))
1
>>> sp.insert(loc=geoLine((100, 100), (20, 180), (180, 180)))
2
>>> sp.insert(loc=geoPolygon((0, 0), (150, 0), (150, 150), (0, 150), (0, 0)))
3





Notice that

rows = db(sp).select()





Always returns the geometry data serialized as text. You can also do the
same more explicitly using st_astext():

>>> print db(sp).select(sp.id, sp.loc.st_astext())
spatial.id,spatial.loc.STAsText()
1,"POINT (1 2)"
2,"LINESTRING (100 100, 20 180, 180 180)"
3,"POLYGON ((0 0, 150 0, 150 150, 0 150, 0 0))"





You can ask for the native representation by using st_asgeojson()
(in PostGIS only):

>>> print db(sp).select(sp.id, sp.loc.st_asgeojson().with_alias('loc'))
spatial.id,loc
1,[1, 2]
2,[[100, 100], [20 180], [180, 180]]
3,[[[0, 0], [150, 0], [150, 150], [0, 150], [0, 0]]]





(notice an array is a point, an array of arrays is a line, and an array
of array of arrays is a polygon).

Here are example of how to use geographical functions:

>>> query = sp.loc.st_intersects(geoLine((20, 120), (60, 160)))
>>> query = sp.loc.st_overlaps(geoPolygon((1, 1), (11, 1), (11, 11), (11, 1), (1, 1)))
>>> query = sp.loc.st_contains(geoPoint(1, 1))
>>> print db(query).select(sp.id, sp.loc)
spatial.id,spatial.loc
3,"POLYGON ((0 0, 150 0, 150 150, 0 150, 0 0))"





Computed distances can also be retrieved as floating point numbers:

>>> dist = sp.loc.st_distance(geoPoint(-1,2)).with_alias('dist')
>>> print db(sp).select(sp.id, dist)
spatial.id,dist
1,2.0
2,140.714249456
3,1.0








Copy data from one db into another

Consider the situation in which you have been using the following
database:

db = DAL('sqlite://storage.sqlite')





and you wish to move to another database using a different connection
string:

db = DAL('postgres://username:password@localhost/mydb')





Before you switch, you want to move the data and rebuild all the
metadata for the new database. We assume the new database to exist but
we also assume it is empty.

PY4WEB provides a script that does this work for you:

cd py4web
python scripts/cpdb.py \\
   -f applications/app/databases \\
   -y 'sqlite://storage.sqlite' \\
   -Y 'postgres://username:password@localhost/mydb' \\
   -d ../gluon





After running the script you can simply switch the connection string in
the model and everything should work out of the box. The new data should
be there.

This script provides various command line options that allows you to
move data from one application to another, move all tables or only some
tables, clear the data in the tables. For more info try:

python scripts/cpdb.py -h








Note on new DAL and adapters

The source code of the Database Abstraction Layer was completely
rewritten in 2010. While it stays backward compatible, the rewrite made
it more modular and easier to extend. Here we explain the main logic.

The file “gluon/dal.py” defines, among other, the following classes.

ConnectionPool
BaseAdapter extends ConnectionPool
Row
DAL
Reference
Table
Expression
Field
Query
Set
Rows





Their use has been explained in the previous sections, except for
BaseAdapter. When the methods of a Table or Set object need
to communicate with the database they delegate to methods of the adapter
the task to generate the SQL and or the function call.

For example:

db.mytable.insert(myfield='myvalue')





calls

Table.insert(myfield='myvalue')





which delegates the adapter by returning:

db._adapter.insert(db.mytable, db.mytable._listify(dict(myfield='myvalue')))





Here db.mytable._listify converts the dict of arguments into a list
of (field,value) and calls the insert method of the adapter.
db._adapter does more or less the following:

query = db._adapter._insert(db.mytable, list_of_fields)
db._adapter.execute(query)





where the first line builds the query and the second executes it.

BaseAdapter defines the interface for all adapters.

“gluon/dal.py” at the moment of writing this book, contains the
following adapters:

SQLiteAdapter extends BaseAdapter
JDBCSQLiteAdapter extends SQLiteAdapter
MySQLAdapter extends BaseAdapter
PostgreSQLAdapter extends BaseAdapter
JDBCPostgreSQLAdapter extends PostgreSQLAdapter
OracleAdapter extends BaseAdapter
MSSQLAdapter extends BaseAdapter
MSSQL2Adapter extends MSSQLAdapter
MSSQL3Adapter extends MSSQLAdapter
MSSQL4Adapter extends MSSQLAdapter
FireBirdAdapter extends BaseAdapter
FireBirdEmbeddedAdapter extends FireBirdAdapter
InformixAdapter extends BaseAdapter
DB2Adapter extends BaseAdapter
IngresAdapter extends BaseAdapter
IngresUnicodeAdapter extends IngresAdapter
GoogleSQLAdapter extends MySQLAdapter
NoSQLAdapter extends BaseAdapter
GoogleDatastoreAdapter extends NoSQLAdapter
CubridAdapter extends MySQLAdapter (experimental)
TeradataAdapter extends DB2Adapter (experimental)
SAPDBAdapter extends BaseAdapter (experimental)
CouchDBAdapter extends NoSQLAdapter (experimental)
IMAPAdapter extends NoSQLAdapter (experimental)
MongoDBAdapter extends NoSQLAdapter (experimental)
VerticaAdapter extends MSSQLAdapter (experimental)
SybaseAdapter extends MSSQLAdapter (experimental)





which override the behavior of the BaseAdapter.

Each adapter has more or less this structure:

class MySQLAdapter(BaseAdapter):

    # specify a driver to use
    driver = globals().get('pymysql', None)

    # map py4web types into database types
    types = {
        'boolean': 'CHAR(1)',
        'string': 'VARCHAR(%(length)s)',
        'text': 'LONGTEXT',
        ...
        }

    # connect to the database using driver
    def __init__(self, db, uri, pool_size=0, folder=None, db_codec ='UTF-8',
                 credential_decoder=lambda x:x, driver_args={},
                 adapter_args={}):
        # parse uri string and store parameters in driver_args
        ...
        # define a connection function
        def connect(driver_args=driver_args):
            return self.driver.connect(**driver_args)
        # place it in the pool
        self.pool_connection(connect)
        # set optional parameters (after connection)
        self.execute('SET FOREIGN_KEY_CHECKS=1;')
        self.execute("SET sql_mode='NO_BACKSLASH_ESCAPES';")

   # override BaseAdapter methods as needed
   def lastrowid(self, table):
        self.execute('select last_insert_id();')
        return int(self.cursor.fetchone()[0])





Looking at the various adapters as example should be easy to write new
ones.

When db instance is created:

db = DAL('mysql://...')





the prefix in the uri string defines the adapter. The mapping is defined
in the following dictionary also in “gluon/dal.py”:

ADAPTERS = {
    'sqlite': SQLiteAdapter,
    'spatialite': SpatiaLiteAdapter,
    'sqlite:memory': SQLiteAdapter,
    'spatialite:memory': SpatiaLiteAdapter,
    'mysql': MySQLAdapter,
    'postgres': PostgreSQLAdapter,
    'postgres:psycopg2': PostgreSQLAdapter,
    'postgres2:psycopg2': NewPostgreSQLAdapter,
    'oracle': OracleAdapter,
    'mssql': MSSQLAdapter,
    'mssql2': MSSQL2Adapter,
    'mssql3': MSSQL3Adapter,
    'mssql4' : MSSQL4Adapter,
    'vertica': VerticaAdapter,
    'sybase': SybaseAdapter,
    'db2': DB2Adapter,
    'teradata': TeradataAdapter,
    'informix': InformixAdapter,
    'informix-se': InformixSEAdapter,
    'firebird': FireBirdAdapter,
    'firebird_embedded': FireBirdAdapter,
    'ingres': IngresAdapter,
    'ingresu': IngresUnicodeAdapter,
    'sapdb': SAPDBAdapter,
    'cubrid': CubridAdapter,
    'jdbc:sqlite': JDBCSQLiteAdapter,
    'jdbc:sqlite:memory': JDBCSQLiteAdapter,
    'jdbc:postgres': JDBCPostgreSQLAdapter,
    'gae': GoogleDatastoreAdapter, # discouraged, for backward compatibility
    'google:datastore': GoogleDatastoreAdapter,
    'google:datastore+ndb': GoogleDatastoreAdapter,
    'google:sql': GoogleSQLAdapter,
    'couchdb': CouchDBAdapter,
    'mongodb': MongoDBAdapter,
    'imap': IMAPAdapter
}





the uri string is then parsed in more detail by the adapter itself.

For any adapter you can replace the driver with a different one:

import MySQLdb as mysqldb
from gluon.dal import MySQLAdapter
MySQLAdapter.driver = mysqldb





i.e. mysqldb has to be that module with a .connect() method. You
can specify optional driver arguments and adapter arguments:

db =DAL(..., driver_args={}, adapter_args={})










Gotchas


SQLite

SQLite does not support dropping and altering columns. That means that
py4web migrations will work up to a point. If you delete a field from a
table, the column will remain in the database but will be invisible to
py4web. If you decide to reinstate the column, py4web will try re-create
it and fail. In this case you must set fake_migrate=True so that
metadata is rebuilt without attempting to add the column again. Also,
for the same reason, SQLite is not aware of any change of column
type. If you insert a number in a string field, it will be stored as
string. If you later change the model and replace the type “string” with
type “integer”, SQLite will continue to keep the number as a string and
this may cause problem when you try to extract the data.

SQLite doesn’t have a boolean type. py4web internally maps booleans to a
1 character string, with ‘T’ and ‘F’ representing True and False. The
DAL handles this completely; the abstraction of a true boolean value
works well. But if you are updating the SQLite table with SQL directly,
be aware of the py4web implementation, and avoid using 0 and 1 values.




MySQL

MySQL does not support multiple ALTER TABLE within a single transaction.
This means that any migration process is broken into multiple commits.
If something happens that causes a failure it is possible to break a
migration (the py4web metadata are no longer in sync with the actual
table structure in the database). This is unfortunate but it can be
prevented (migrate one table at the time) or it can be fixed a
posteriori (revert the py4web model to what corresponds to the table
structure in database, set fake_migrate=True and after the metadata
has been rebuilt, set fake_migrate=False and migrate the table
again).




Google SQL

Google SQL has the same problems as MySQL and more. In particular table
metadata itself must be stored in the database in a table that is not
migrated by py4web. This is because Google App Engine has a read-only
file system. PY4WEB migrations in Google SQL combined with the MySQL
issue described above can result in metadata corruption. Again, this can
be prevented (by migrating the table at once and then setting
migrate=False so that the metadata table is not accessed any more) or it
can fixed a posteriori (by accessing the database using the Google
dashboard and deleting any corrupted entry from the table called
py4web_filesystem.




MSSQL (Microsoft SQL Server)

MSSQL < 2012 does not support the SQL OFFSET keyword. Therefore the
database cannot do pagination. When doing a limitby=(a, b) py4web
will fetch the first a + b rows and discard the first a. This
may result in a considerable overhead when compared with other database
engines. If you’re using MSSQL >= 2005, the recommended prefix to use is
mssql3:// which provides a method to avoid the issue of fetching the
entire non-paginated resultset. If you’re on MSSQL >= 2012, use
mssql4:// that uses the
OFFSET ... ROWS ... FETCH NEXT ... ROWS ONLY construct to support
natively pagination without performance hits like other backends. The
mssql:// uri also enforces (for historical reasons) the use of
text columns, that are superseeded in more recent versions (from
2005 onwards) by varchar(max). mssql3:// and mssql4://
should be used if you don’t want to face some limitations of the -
officially deprecated - text columns.

MSSQL has problems with circular references in tables that have ONDELETE
CASCADE. This is an MSSQL bug and you work around it by setting the
ondelete attribute for all reference fields to “NO ACTION”. You can also
do it once and for all before you define tables:

db = DAL('mssql://....')
for key in db._adapter.types:
    if ' ON DELETE %(on_delete_action)s' in db._adapter.types[key]:
        db._adapter.types[key] = db._adapter.types[key].replace('%(on_delete_action)s', 'NO ACTION')





MSSQL also has problems with arguments passed to the DISTINCT keyword
and therefore while this works,

db(query).select(distinct=True)





this does not

db(query).select(distinct=db.mytable.myfield)








Oracle

Oracle also does not support pagination. It does not support neither the
OFFSET nor the LIMIT keywords. PY4WEB achieves pagination by translating
a db(...).select(limitby=(a, b)) into a complex three-way nested
select (as suggested by official Oracle documentation). This works for
simple select but may break for complex selects involving aliased fields
and or joins.




Google NoSQL (Datastore)

Google NoSQL (Datastore) does not allow joins, left joins, aggregates,
expression, OR involving more than one table, the ‘like’ operator
searches in “text” fields.

Transactions are limited and not provided automatically by py4web (you
need to use the Google API run_in_transaction which you can look up
in the Google App Engine documentation online).

Google also limits the number of records you can retrieve in each one
query (1000 at the time of writing). On the Google datastore record IDs
are integer but they are not sequential. While on SQL the “list:string”
type is mapped into a “text” type, on the Google Datastore it is mapped
into a ListStringProperty. Similarly “list:integer” and
“list:reference” are mapped into ListProperty. This makes searches
for content inside these fields types more efficient on Google NoSQL
than on SQL databases.









            

          

      

      

    
 

  


  

    
      
          
            
  
The RESTAPI

Since version 19.5.10 PyDAL includes a restful API called RestAPI. It is
inspired by GraphQL but it’s not quite the same because it is less
powerful but, in the spirit of web2py, more practical and easier to use.
Like GraphSQL RestAPI allows a client to query for information using the
GET method and allows to specify some details about the format of the
response (which references to follow, and how to denormalize the data).
Unlike GraphSQL it allows the server to specify a policy and restrict
which queries are allowed and which one are not. They can be evaluated
dynamically per request based on the user and the state of the server.
As the name implied RestAPI allows all stardard methods GET, POST, PUT,
and DELETE. Each of them can be enabled or disabled based on the policy,
for individual tables and individual fields.

In the examples below we assume an app called “superheroes” and the
following model:

db.define_table(
    'person',
    Field('name'),
    Field('job'))

db.define_table(
    'superhero',
    Field('name'),
    Field('real_identity', 'reference person'))

db.define_table(
    'superpower',
    Field('description'))

db.define_table(
    'tag',
    Field('superhero', 'reference superhero'),
    Field('superpower', 'reference superpower'),
    Field('strength', 'integer'))





We also assume the following controller rest.py:

from pydal.dbapi import RestAPI, Policy

policy = Policy()
policy.set('superhero', 'GET', authorize=True, allowed_patterns=['*'])
policy.set('*', 'GET', authorize=True, allowed_patterns=['*'])

# for security reasons we disabled here all methods but GET at the policy level, to enable any of them just set authorize = True
policy.set('*', 'PUT', authorize=False)
policy.set('*', 'POST', authorize=False)
policy.set('*', 'DELETE', authorize=False)

@action('api/<tablename>/', method = ['GET', 'POST'])
@action('api/<tablename>/<rec_id>', method = ['GET', 'PUT', 'DELETE'])
def api(tablename, rec_id=None):
    return RestAPI(db, policy)(request.method,
                               tablename,
                               rec_id,
                               request.GET,
                               request.POST
                               )





The policy is per table (or * for all tables and per method. authorize
can be True (allow), False (deny) or a function with the signature
(method, tablename, record_id, get_vars, post_vars) which returns
True/False. For the GET policy one can specify a list of allowed query
patterns (* for all). A query pattern will be matched against the keys
in the query string.

The above action is exposed as:

/superheroes/rest/api/{tablename}





About request.POST: keep in mind that request.POST only contains
the form data that is posted using a regular HTML-form or javascript
FormData object. If you post just plain object
(e.g. axios.post( 'path/to/api', {field:'some'} )) you should pass
request.json instead of request.POST, since latter will contain just
raw request-body which is string, not json. See bottle.py documentation
for more details.


RestAPI GET

The general query has the form {something}.eq=value where eq=
stands for “equal”, gt= stands for “greater than”, etc. The
expression can be prepended by not..

{something} can be the name of a field in the table been queried as
in:

All superheroes called “Superman”

/superheroes/rest/api/superhero?name.eq=Superman





It can be a the name of a field of a table referred by the table been
queried as in:

All superheroes with real identity “Clark Kent”

/superheroes/rest/api/superhero?real_identity.name.eq=Clark Kent





It can be the name of a field of a table that refers to the table neen
queried as in:

All superheroes with any tag superpower with strength > 90

/superheroes/rest/api/superhero?superhero.tag.strength.gt=90





(here tag is the name of the link table, the preceding superhero is
the name of the field that refers to the selected table and strength
is the name of the field used to filter)

It can also be a field of the table referenced by a many-to-many linked
table as in:

All superheroes with the flight power

/superheroes/rest/api/superhero?superhero.tag.superpower.description.eq=Flight





The key to understand the syntax above is to break it as follows:

superhero?superhero.tag.superpower.description.eq=Flight





and read it as:


select records of table superhero referred by field superhero
of table tag when the superpower field of said table points
to a record with description equal to “Flight”.




The query allows additional modifiers for example

@offset=10
@limit=10
@order=name
@model=true
@lookup=real_identity





The first 3 are obvious. @model returns a JSON description of database
model. Lookup denormalizes the linked field.

Here are some practical examples:

URL:

/superheroes/rest/api/superhero





OUTPUT:

{
    "count": 3,
    "status": "success",
    "code": 200,
    "items": [
        {
            "real_identity": 1,
            "name": "Superman",
            "id": 1
        },
        {
            "real_identity": 2,
            "name": "Spiderman",
            "id": 2
        },
        {
            "real_identity": 3,
            "name": "Batman",
            "id": 3
        }
    ],
    "timestamp": "2019-05-19T05:38:00.132635",
    "api_version": "0.1"
}





URL:

/superheroes/rest/api/superhero?@model=true





OUTPUT:

{
    "count": 3,
    "status": "success",
    "code": 200,
    "items": [
        {
            "real_identity": 1,
            "name": "Superman",
            "id": 1
        },
        {
            "real_identity": 2,
            "name": "Spiderman",
            "id": 2
        },
        {
            "real_identity": 3,
            "name": "Batman",
            "id": 3
        }
    ],
    "timestamp": "2019-05-19T05:38:00.098292",
    "model": [
        {
            "regex": "[1-9]\\d*",
            "name": "id",
            "default": null,
            "required": false,
            "label": "Id",
            "post_writable": true,
            "referenced_by": [],
            "unique": false,
            "type": "id",
            "options": null,
            "put_writable": true
        },
        {
            "regex": null,
            "name": "name",
            "default": null,
            "required": false,
            "label": "Name",
            "post_writable": true,
            "unique": false,
            "type": "string",
            "options": null,
            "put_writable": true
        },
        {
            "regex": null,
            "name": "real_identity",
            "default": null,
            "required": false,
            "label": "Real Identity",
            "post_writable": true,
            "references": "person",
            "unique": false,
            "type": "reference",
            "options": null,
            "put_writable": true
        }
    ],
    "api_version": "0.1"
}





URL:

/superheroes/rest/api/superhero?@lookup=real_identity





OUTPUT:

{
    "count": 3,
    "status": "success",
    "code": 200,
    "items": [
        {
            "real_identity": {
                "name": "Clark Kent",
                "job": "Journalist",
                "id": 1
            },
            "name": "Superman",
            "id": 1
        },
        {
            "real_identity": {
                "name": "Peter Park",
                "job": "Photographer",
                "id": 2
            },
            "name": "Spiderman",
            "id": 2
        },
        {
            "real_identity": {
                "name": "Bruce Wayne",
                "job": "CEO",
                "id": 3
            },
            "name": "Batman",
            "id": 3
        }
    ],
    "timestamp": "2019-05-19T05:38:00.178974",
    "api_version": "0.1"
}





URL:

/superheroes/rest/api/superhero?@lookup=identity:real_identity





(denormalize the real_identity and rename it identity)

OUTPUT:

{
    "count": 3,
    "status": "success",
    "code": 200,
    "items": [
        {
            "real_identity": 1,
            "name": "Superman",
            "id": 1,
            "identity": {
                "name": "Clark Kent",
                "job": "Journalist",
                "id": 1
            }
        },
        {
            "real_identity": 2,
            "name": "Spiderman",
            "id": 2,
            "identity": {
                "name": "Peter Park",
                "job": "Photographer",
                "id": 2
            }
        },
        {
            "real_identity": 3,
            "name": "Batman",
            "id": 3,
            "identity": {
                "name": "Bruce Wayne",
                "job": "CEO",
                "id": 3
            }
        }
    ],
    "timestamp": "2019-05-19T05:38:00.123218",
    "api_version": "0.1"
}





URL:

/superheroes/rest/api/superhero?@lookup=identity!:real_identity[name,job]





(denormalize the real_identity [but only fields name and job], collapse
the with the identity prefix)

OUTPUT:

{
    "count": 3,
    "status": "success",
    "code": 200,
    "items": [
        {
            "name": "Superman",
            "identity_job": "Journalist",
            "identity_name": "Clark Kent",
            "id": 1
        },
        {
            "name": "Spiderman",
            "identity_job": "Photographer",
            "identity_name": "Peter Park",
            "id": 2
        },
        {
            "name": "Batman",
            "identity_job": "CEO",
            "identity_name": "Bruce Wayne",
            "id": 3
        }
    ],
    "timestamp": "2019-05-19T05:38:00.192180",
    "api_version": "0.1"
}





URL:

/superheroes/rest/api/superhero?@lookup=superhero.tag





OUTPUT:

{
    "count": 3,
    "status": "success",
    "code": 200,
    "items": [
        {
            "real_identity": 1,
            "name": "Superman",
            "superhero.tag": [
                {
                    "strength": 100,
                    "superhero": 1,
                    "id": 1,
                    "superpower": 1
                },
                {
                    "strength": 100,
                    "superhero": 1,
                    "id": 2,
                    "superpower": 2
                },
                {
                    "strength": 100,
                    "superhero": 1,
                    "id": 3,
                    "superpower": 3
                },
                {
                    "strength": 100,
                    "superhero": 1,
                    "id": 4,
                    "superpower": 4
                }
            ],
            "id": 1
        },
        {
            "real_identity": 2,
            "name": "Spiderman",
            "superhero.tag": [
                {
                    "strength": 50,
                    "superhero": 2,
                    "id": 5,
                    "superpower": 2
                },
                {
                    "strength": 75,
                    "superhero": 2,
                    "id": 6,
                    "superpower": 3
                },
                {
                    "strength": 10,
                    "superhero": 2,
                    "id": 7,
                    "superpower": 4
                }
            ],
            "id": 2
        },
        {
            "real_identity": 3,
            "name": "Batman",
            "superhero.tag": [
                {
                    "strength": 80,
                    "superhero": 3,
                    "id": 8,
                    "superpower": 2
                },
                {
                    "strength": 20,
                    "superhero": 3,
                    "id": 9,
                    "superpower": 3
                },
                {
                    "strength": 70,
                    "superhero": 3,
                    "id": 10,
                    "superpower": 4
                }
            ],
            "id": 3
        }
    ],
    "timestamp": "2019-05-19T05:38:00.201988",
    "api_version": "0.1"
}





URL:

/superheroes/rest/api/superhero?@lookup=superhero.tag.superpower





OUTPUT:

{
    "count": 3,
    "status": "success",
    "code": 200,
    "items": [
        {
            "real_identity": 1,
            "name": "Superman",
            "superhero.tag.superpower": [
                {
                    "strength": 100,
                    "superhero": 1,
                    "id": 1,
                    "superpower": {
                        "id": 1,
                        "description": "Flight"
                    }
                },
                {
                    "strength": 100,
                    "superhero": 1,
                    "id": 2,
                    "superpower": {
                        "id": 2,
                        "description": "Strength"
                    }
                },
                {
                    "strength": 100,
                    "superhero": 1,
                    "id": 3,
                    "superpower": {
                        "id": 3,
                        "description": "Speed"
                    }
                },
                {
                    "strength": 100,
                    "superhero": 1,
                    "id": 4,
                    "superpower": {
                        "id": 4,
                        "description": "Durability"
                    }
                }
            ],
            "id": 1
        },
        {
            "real_identity": 2,
            "name": "Spiderman",
            "superhero.tag.superpower": [
                {
                    "strength": 50,
                    "superhero": 2,
                    "id": 5,
                    "superpower": {
                        "id": 2,
                        "description": "Strength"
                    }
                },
                {
                    "strength": 75,
                    "superhero": 2,
                    "id": 6,
                    "superpower": {
                        "id": 3,
                        "description": "Speed"
                    }
                },
                {
                    "strength": 10,
                    "superhero": 2,
                    "id": 7,
                    "superpower": {
                        "id": 4,
                        "description": "Durability"
                    }
                }
            ],
            "id": 2
        },
        {
            "real_identity": 3,
            "name": "Batman",
            "superhero.tag.superpower": [
                {
                    "strength": 80,
                    "superhero": 3,
                    "id": 8,
                    "superpower": {
                        "id": 2,
                        "description": "Strength"
                    }
                },
                {
                    "strength": 20,
                    "superhero": 3,
                    "id": 9,
                    "superpower": {
                        "id": 3,
                        "description": "Speed"
                    }
                },
                {
                    "strength": 70,
                    "superhero": 3,
                    "id": 10,
                    "superpower": {
                        "id": 4,
                        "description": "Durability"
                    }
                }
            ],
            "id": 3
        }
    ],
    "timestamp": "2019-05-19T05:38:00.322494",
    "api_version": "0.1"
}





URL (it’s a single line, splitted for readability):

/superheroes/rest/api/superhero?
@lookup=powers:superhero.tag[strength].superpower[description]





OUTPUT:

{
    "count": 3,
    "status": "success",
    "code": 200,
    "items": [
        {
            "real_identity": 1,
            "name": "Superman",
            "powers": [
                {
                    "strength": 100,
                    "superpower": {
                        "description": "Flight"
                    }
                },
                {
                    "strength": 100,
                    "superpower": {
                        "description": "Strength"
                    }
                },
                {
                    "strength": 100,
                    "superpower": {
                        "description": "Speed"
                    }
                },
                {
                    "strength": 100,
                    "superpower": {
                        "description": "Durability"
                    }
                }
            ],
            "id": 1
        },
        {
            "real_identity": 2,
            "name": "Spiderman",
            "powers": [
                {
                    "strength": 50,
                    "superpower": {
                        "description": "Strength"
                    }
                },
                {
                    "strength": 75,
                    "superpower": {
                        "description": "Speed"
                    }
                },
                {
                    "strength": 10,
                    "superpower": {
                        "description": "Durability"
                    }
                }
            ],
            "id": 2
        },
        {
            "real_identity": 3,
            "name": "Batman",
            "powers": [
                {
                    "strength": 80,
                    "superpower": {
                        "description": "Strength"
                    }
                },
                {
                    "strength": 20,
                    "superpower": {
                        "description": "Speed"
                    }
                },
                {
                    "strength": 70,
                    "superpower": {
                        "description": "Durability"
                    }
                }
            ],
            "id": 3
        }
    ],
    "timestamp": "2019-05-19T05:38:00.309903",
    "api_version": "0.1"
}





URL (it’s a single line, splitted for readability):

/superheroes/rest/api/superhero?
@lookup=powers!:superhero.tag[strength].superpower[description]





OUTPUT:

{
    "count": 3,
    "status": "success",
    "code": 200,
    "items": [
        {
            "real_identity": 1,
            "name": "Superman",
            "powers": [
                {
                    "strength": 100,
                    "description": "Flight"
                },
                {
                    "strength": 100,
                    "description": "Strength"
                },
                {
                    "strength": 100,
                    "description": "Speed"
                },
                {
                    "strength": 100,
                    "description": "Durability"
                }
            ],
            "id": 1
        },
        {
            "real_identity": 2,
            "name": "Spiderman",
            "powers": [
                {
                    "strength": 50,
                    "description": "Strength"
                },
                {
                    "strength": 75,
                    "description": "Speed"
                },
                {
                    "strength": 10,
                    "description": "Durability"
                }
            ],
            "id": 2
        },
        {
            "real_identity": 3,
            "name": "Batman",
            "powers": [
                {
                    "strength": 80,
                    "description": "Strength"
                },
                {
                    "strength": 20,
                    "description": "Speed"
                },
                {
                    "strength": 70,
                    "description": "Durability"
                }
            ],
            "id": 3
        }
    ],
    "timestamp": "2019-05-19T05:38:00.355181",
    "api_version": "0.1"
}





URL (it’s a single line, splitted for readability):

/superheroes/rest/api/superhero?
@lookup=powers!:superhero.tag[strength].superpower[description],
identity!:real_identity[name]





OUTPUT:

{
    "count": 3,
    "status": "success",
    "code": 200,
    "items": [
        {
            "name": "Superman",
            "identity_name": "Clark Kent",
            "powers": [
                {
                    "strength": 100,
                    "description": "Flight"
                },
                {
                    "strength": 100,
                    "description": "Strength"
                },
                {
                    "strength": 100,
                    "description": "Speed"
                },
                {
                    "strength": 100,
                    "description": "Durability"
                }
            ],
            "id": 1
        },
        {
            "name": "Spiderman",
            "identity_name": "Peter Park",
            "powers": [
                {
                    "strength": 50,
                    "description": "Strength"
                },
                {
                    "strength": 75,
                    "description": "Speed"
                },
                {
                    "strength": 10,
                    "description": "Durability"
                }
            ],
            "id": 2
        },
        {
            "name": "Batman",
            "identity_name": "Bruce Wayne",
            "powers": [
                {
                    "strength": 80,
                    "description": "Strength"
                },
                {
                    "strength": 20,
                    "description": "Speed"
                },
                {
                    "strength": 70,
                    "description": "Durability"
                }
            ],
            "id": 3
        }
    ],
    "timestamp": "2019-05-19T05:38:00.396583",
    "api_version": "0.1"
}





URL:

/superheroes/rest/api/superhero?name.eq=Superman





OUTPUT:

{
    "count": 1,
    "status": "success",
    "code": 200,
    "items": [
        {
            "real_identity": 1,
            "name": "Superman",
            "id": 1
        }
    ],
    "timestamp": "2019-05-19T05:38:00.405515",
    "api_version": "0.1"
}





URL:

/superheroes/rest/api/superhero?real_identity.name.eq=Clark Kent





OUTPUT:

{
    "count": 1,
    "status": "success",
    "code": 200,
    "items": [
        {
            "real_identity": 1,
            "name": "Superman",
            "id": 1
        }
    ],
    "timestamp": "2019-05-19T05:38:00.366288",
    "api_version": "0.1"
}





URL:

/superheroes/rest/api/superhero?not.real_identity.name.eq=Clark Kent





OUTPUT:

{
    "count": 2,
    "status": "success",
    "code": 200,
    "items": [
        {
            "real_identity": 2,
            "name": "Spiderman",
            "id": 2
        },
        {
            "real_identity": 3,
            "name": "Batman",
            "id": 3
        }
    ],
    "timestamp": "2019-05-19T05:38:00.451907",
    "api_version": "0.1"
}





URL:

/superheroes/rest/api/superhero?superhero.tag.superpower.description=Flight





OUTPUT:

{
    "count": 1,
    "status": "success",
    "code": 200,
    "items": [
        {
            "real_identity": 1,
            "name": "Superman",
            "id": 1
        }
    ],
    "timestamp": "2019-05-19T05:38:00.453020",
    "api_version": "0.1"
}





Notice all RestAPI response have the fields

{
    "api_version": ...
    "timestamp": ...
    "status": ...
    "code": ...
}





and some optional fields:

{
    "count": ... (total matching, not total returned, for GET)
    "items": ... (in response to a GET)
    "errors": ... (usually validation error0
    "models": ... (usually if status != success)
    "message": ... (is if error)
}





The exact specs are subject to change since this is a new feature.







            

          

      

      

    
 

  


  

    
      
          
            
  
YATL Template Language

py4web uses Python for its models, controllers, and views, although it
uses a slightly modified Python syntax in the views to allow more
readable code without imposing any restrictions on proper Python usage.

py4web uses [[ ... ]] to escape Python code embedded in HTML. The
advantage of using square brackets instead of angle brackets is that
it’s transparent to all common HTML editors. This allows the developer
to use those editors to create py4web views.

Since the developer is embedding Python code into HTML, the document
should be indented according to HTML rules, and not Python rules.
Therefore, we allow unindented Python inside the [[ ... ]] tags.
Since Python normally uses indentation to delimit blocks of code, we
need a different way to delimit them; this is why the py4web template
language makes use of the Python keyword pass.


A code block starts with a line ending with a colon and ends with a
line beginning with pass. The keyword pass is not necessary
when the end of the block is obvious from the context.




Here is an example:

[[
if i == 0:
response.write('i is 0')
else:
response.write('i is not 0')
pass
]]





Note that pass is a Python keyword, not a py4web keyword. Some
Python editors, such as Emacs, use the keyword pass to signify the
division of blocks and use it to re-indent code automatically.

The py4web template language does exactly the same. When it finds
something like:

<html><body>
[[for x in range(10):]][[=x]]hello<br />[[pass]]
</body></html>





it translates it into a program:

response.write("""<html><body>""", escape=False)
for x in range(10):
    response.write(x)
    response.write("""hello<br />""", escape=False)
response.write("""</body></html>""", escape=False)





response.write writes to the response.body.

When there is an error in a py4web view, the error report shows the
generated view code, not the actual view as written by the developer.
This helps the developer debug the code by highlighting the actual code
that is executed (which is something that can be debugged with an HTML
editor or the DOM inspector of the browser).

Also note that:

[[=x]]





generates

response.write(x)





Variables injected into the HTML in this way are escaped by default. The
escaping is ignored if x is an XML object, even if escape is set
to True.

Here is an example that introduces the H1 helper:

[[=H1(i)]]





which is translated to:

response.write(H1(i))





upon evaluation, the H1 object and its components are recursively
serialized, escaped and written to the response body. The tags generated
by H1 and inner HTML are not escaped. This mechanism guarantees that
all text — and only text — displayed on the web page is always escaped,
thus preventing XSS vulnerabilities. At the same time, the code is
simple and easy to debug.

The method response.write(obj, escape=True) takes two arguments, the
object to be written and whether it has to be escaped (set to True
by default). If obj has an .xml() method, it is called and the
result written to the response body (the escape argument is
ignored). Otherwise it uses the object’s __str__ method to serialize
it and, if the escape argument is True, escapes it. All built-in
helper objects (H1 in the example) are objects that know how to
serialize themselves via the .xml() method.

This is all done transparently. You never need to (and never should)
call the response.write method explicitly.


Basic syntax

The py4web template language supports all Python control structures.
Here we provide some examples of each of them. They can be nested
according to usual programming practice.


for...in

In templates you can loop over any iterable object:

[[items = ['a', 'b', 'c']]]
<ul>
[[for item in items:]]<li>[[=item]]</li>[[pass]]
</ul>





which produces:

<ul>
<li>a</li>
<li>b</li>
<li>c</li>
</ul>





Here items is any iterable object such as a Python list, Python
tuple, or Rows object, or any object that is implemented as an iterator.
The elements displayed are first serialized and escaped.




while

You can create a loop using the while keyword:

[[k = 3]]
<ul>
[[while k > 0:]]<li>[[=k]][[k = k - 1]]</li>[[pass]]
</ul>





which produces:

<ul>
<li>3</li>
<li>2</li>
<li>1</li>
</ul>








if...elif...else

You can use conditional clauses:

[[
import random
k = random.randint(0, 100)
]]
<h2>
[[=k]]
[[if k % 2:]]is odd[[else:]]is even[[pass]]
</h2>





which produces:

<h2>
45 is odd
</h2>





Since it is obvious that else closes the first if block, there
is no need for a pass statement, and using one would be incorrect.
However, you must explicitly close the else block with a pass.

Recall that in Python “else if” is written elif as in the following
example:

[[
import random
k = random.randint(0, 100)
]]
<h2>
[[=k]]
[[if k % 4 == 0:]]is divisible by 4
[[elif k % 2 == 0:]]is even
[[else:]]is odd
[[pass]]
</h2>





It produces:

<h2>
64 is divisible by 4
</h2>








try...except...else...finally

It is also possible to use try...except statements in views with one
caveat. Consider the following example:

[[try:]]
Hello [[= 1 / 0]]
[[except:]]
division by zero
[[else:]]
no division by zero
[[finally:]]
<br />
[[pass]]





It will produce the following output:

Hello division by zero
<br />





This example illustrates that all output generated before an exception
occurs is rendered (including output that preceded the exception) inside
the try block. “Hello” is written because it precedes the exception.




def...return

The py4web template language allows the developer to define and
implement functions that can return any Python object or a text/html
string. Here we consider two examples:

[[def itemize1(link): return LI(A(link, _href="http://" + link))]]
<ul>
[[=itemize1('www.google.com')]]
</ul>





produces the following output:

<ul>
<li><a href="http:/www.google.com">www.google.com</a></li>
</ul>





The function itemize1 returns a helper object that is inserted at
the location where the function is called.

Consider now the following code:

[[def itemize2(link):]]
<li><a href="http://[[=link]]">[[=link]]</a></li>
[[return]]
<ul>
[[itemize2('www.google.com')]]
</ul>





It produces exactly the same output as above. In this case, the function
itemize2 represents a piece of HTML that is going to replace the
py4web tag where the function is called. Notice that there is no ‘=’ in
front of the call to itemize2, since the function does not return
the text, but it writes it directly into the response.

There is one caveat: functions defined inside a view must terminate with
a return statement, or the automatic indentation will fail.









            

          

      

      

    
 

  


  

    
      
          
            
  
YATL helpers

Consider the following code in a view:

[[=DIV('this', 'is', 'a', 'test', _id='123', _class='myclass')]]





it is rendered as:

<div id="123" class="myclass">thisisatest</div>





DIV is a helper class, i.e., something that can be used to build
HTML programmatically. It corresponds to the HTML <div> tag.

Positional arguments are interpreted as objects contained between the
open and close tags. Named arguments that start with an underscore are
interpreted as HTML tag attributes (without the underscore). Some
helpers also have named arguments that do not start with underscore;
these arguments are tag-specific.

Instead of a set of unnamed arguments, a helper can also take a single
list or tuple as its set of components using the * notation and it
can take a single dictionary as its set of attributes using the **,
for example:

[[
contents = ['this', 'is', 'a', 'test']
attributes = {'_id':'123', '_class':'myclass'}
=DIV(*contents, **attributes)
]]





(produces the same output as before).

The following set of helpers:

A, BEAUTIFY, BODY, CAT, CODE, DIV, EM,
FORM, H1, H2, H3, H4, H5, H6, HEAD,
HTML, I, IMG, INPUT, LABEL, LI, LINK,
META, METATAG, OL, OPTION, PRE, SELECT,
SPAN, STRONG, TABLE, TAG, TBODY, TD,
TEXTAREA, TH, THEAD, TR, UL, XML, sanitize,
xmlescape

can be used to build complex expressions that can then be serialized to
XML. For example:

[[=DIV(B(I("hello ", "<world>")), _class="myclass")]]





is rendered:

<div class="myclass"><b><i>hello &lt;world&gt;</i></b></div>





Helpers can also be serialized into strings, equivalently, with the
__str__ and the xml methods:

>>> print str(DIV("hello world"))
<div>hello world</div>
>>> print DIV("hello world").xml()
<div>hello world</div>





The helpers mechanism in py4web is more than a system to generate HTML
without concatenating strings. It provides a server-side representation
of the Document Object Model (DOM).

Components of helpers can be referenced via their position, and helpers
act as lists with respect to their components:

>>> a = DIV(SPAN('a', 'b'), 'c')
>>> print a
<div><span>ab</span>c</div>
>>> del a[1]
>>> a.append(B('x'))
>>> a[0][0] = 'y'
>>> print a
<div><span>yb</span><b>x</b></div>





Attributes of helpers can be referenced by name, and helpers act as
dictionaries with respect to their attributes:

>>> a = DIV(SPAN('a', 'b'), 'c')
>>> a['_class'] = 's'
>>> a[0]['_class'] = 't'
>>> print a
<div class="s"><span class="t">ab</span>c</div>





Note, the complete set of components can be accessed via a list called
a.components, and the complete set of attributes can be accessed via
a dictionary called a.attributes. So, a[i] is equivalent to
a.components[i] when i is an integer, and a[s] is equivalent
to a.attributes[s] when s is a string.

Notice that helper attributes are passed as keyword arguments to the
helper. In some cases, however, attribute names include special
characters that are not allowed in Python identifiers (e.g., hyphens)
and therefore cannot be used as keyword argument names. For example:

DIV('text', _data-role='collapsible')





will not work because “_data-role” includes a hyphen, which will produce
a Python syntax error.

In such cases you have a couple of options. You can use the data
argument (this time without a leading underscore) to pass a dictionary
of related attributes without their leading hyphen, and the output will
have the desired combinations e.g.

>>> print DIV('text', data={'role': 'collapsible'})
<div data-role="collapsible">text</div>





or you can instead pass the attributes as a dictionary and make use of
Python’s ** function arguments notation, which maps a dictionary of
(key:value) pairs into a set of keyword arguments:

>>> print DIV('text', **{'_data-role': 'collapsible'})
<div data-role="collapsible">text</div>





Note that more elaborate entries will introduce HTML character entities,
but they will work nonetheless e.g.

>>> print DIV('text', data={'options':'{"mode":"calbox", "useNewStyle":true}'})
<div data-options="{&quot;mode&quot;:&quot;calbox&quot;, &quot;useNewStyle&quot;:true}">text</div>





You can also dynamically create special TAGs:

>>> print TAG['soap:Body']('whatever', **{'_xmlns:m':'http://www.example.org'})
<soap:Body xmlns:m="http://www.example.org">whatever</soap:Body>






XML

XML is an object used to encapsulate text that should not be
escaped. The text may or may not contain valid XML. For example, it
could contain JavaScript.

The text in this example is escaped:

>>> print DIV("<b>hello</b>")
<div>&lt;b&gt;hello&lt;/b&gt;</div>





by using XML you can prevent escaping:

>>> print DIV(XML("<b>hello</b>"))
<div><b>hello</b></div>





Sometimes you want to render HTML stored in a variable, but the HTML may
contain unsafe tags such as scripts:

>>> print XML('<script>alert("unsafe!")</script>')
<script>alert("unsafe!")</script>





Un-escaped executable input such as this (for example, entered in the
body of a comment in a blog) is unsafe, because it can be used to
generate Cross Site Scripting (XSS) attacks against other visitors to
the page.

The py4web XML helper can sanitize our text to prevent injections
and escape all tags except those that you explicitly allow. Here is an
example:

>>> print XML('<script>alert("unsafe!")</script>', sanitize=True)
&lt;script&gt;alert(&quot;unsafe!&quot;)&lt;/script&gt;





The XML constructors, by default, consider the content of some tags
and some of their attributes safe. You can override the defaults using
the optional permitted_tags and allowed_attributes arguments.
Here are the default values of the optional arguments of the XML
helper.

XML(text, sanitize=False,
    permitted_tags=['a', 'b', 'blockquote', 'br/', 'i', 'li',
       'ol', 'ul', 'p', 'cite', 'code', 'pre', 'img/'],
    allowed_attributes={'a':['href', 'title'],
       'img':['src', 'alt'], 'blockquote':['type']})








Built-in helpers


A

This helper is used to build links.

>>> print A('<click>', XML('<b>me</b>'),
            _href='http://www.py4web.com')
<a href='http://www.py4web.com'>&lt;click&gt;<b>me</b></a>








BODY

This helper makes the body of a page.

>>> print BODY('<hello>', XML('<b>world</b>'), _bgcolor='red')
<body bgcolor="red">&lt;hello&gt;<b>world</b></body>








CAT

This helper concatenates other helpers, same as TAG[‘’].

>>> print CAT('Here is a ', A('link', _href=URL()), ', and here is some ', B('bold text'), '.')
Here is a <a href="/app/default/index">link</a>, and here is some <b>bold text</b>.








CODE

This helper performs syntax highlighting for Python, C, C++, HTML and
py4web code, and is preferable to PRE for code listings. CODE
also has the ability to create links to the py4web API documentation.

Here is an example of highlighting sections of Python code.

>>> print CODE('print "hello"', language='python').xml()





<table><tr style="vertical-align:top;">
  <td style="min-width:40px; text-align: right;"><pre style="
        font-size: 11px;
        font-family: Bitstream Vera Sans Mono,monospace;
        background-color: transparent;
        margin: 0;
        padding: 5px;
        border: none;
        color: #A0A0A0;
    ">1.</pre></td><td><pre style="
        font-size: 11px;
        font-family: Bitstream Vera Sans Mono,monospace;
        background-color: transparent;
        margin: 0;
        padding: 5px;
        border: none;
        overflow: auto;
        white-space: pre !important;
"><span style="color:#185369; font-weight: bold">print </span>
  <span style="color: #FF9966">"hello"</span></pre></td></tr></table>





Here is a similar example for HTML

>>> print CODE('<html><body>[[=request.env.remote_add]]</body></html>',
...     language='html')





<table>...<code>...
<html><body>[[=request.env.remote_add]]</body></html>
...</code>...</table>





These are the default arguments for the CODE helper:

CODE("print 'hello world'", language='python', link=None, counter=1, styles={})





Supported values for the language argument are “python”,
“html_plain”, “c”, “cpp”, “py4web”, and “html”. The “html” language
interprets tags as “py4web” code, while “html_plain” doesn’t.

If a link value is specified, for example “/examples/global/vars/”,
py4web API references in the code are linked to documentation at the
link URL. For example “request” would be linked to
“/examples/global/vars/request”. In the above example, the link URL is
handled by the “vars” action in the “global.py” controller that is
distributed as part of the py4web “examples” application.

The counter argument is used for line numbering. It can be set to
any of three different values. It can be None for no line numbers, a
numerical value specifying the start number, or a string. If the counter
is set to a string, it is interpreted as a prompt, and there are no line
numbers.

The styles argument is a bit tricky. If you look at the generated
HTML above, it contains a table with two columns, and each column has
its own style declared inline using CSS. The styles attributes
allows you to override those two CSS styles. For example:

CODE(..., styles={'CODE':'margin: 0;padding: 5px;border: none;'})





The styles attribute must be a dictionary, and it allows two
possible keys: CODE for the style of the actual code, and
LINENUMBERS for the style of the left column, which contains the
line numbers. Mind that these styles completely replace the default
styles and are not simply added to them.




DIV

All helpers apart from XML are derived from DIV and inherit its
basic methods.

>>> print DIV('<hello>', XML('<b>world</b>'), _class='test', _id=0)
<div id="0" class="test">&lt;hello&gt;<b>world</b></div>








EM

Emphasizes its content.

>>> print EM('<hello>', XML('<b>world</b>'), _class='test', _id=0)
<em id="0" class="test">&lt;hello&gt;<b>world</b></em>








FORM

This is one of the most important helpers. In its simple form, it just
makes a <form>...</form> tag, but because helpers are objects and
have knowledge of what they contain, they can process submitted forms
(for example, perform validation of the fields). This will be discussed
in detail in Chapter 10.

>>> print FORM(INPUT(_type='submit'), _action='', _method='post')
<form enctype="multipart/form-data" action="" method="post">
<input type="submit" /></form>





The “enctype” is “multipart/form-data” by default.

The constructor of a FORM, and of SQLFORM, can also take a
special argument called hidden. When a dictionary is passed as
hidden, its items are translated into “hidden” INPUT fields. For
example:

>>> print FORM(hidden=dict(a='b'))
<form enctype="multipart/form-data" action="" method="post">
<input value="b" type="hidden" name="a" /></form>








H1, H2, H3, H4, H5, H6

These helpers are for paragraph headings and subheadings:

>>> print H1('<hello>', XML('<b>world</b>'), _class='test', _id=0)
<h1 id="0" class="test">&lt;hello&gt;<b>world</b></h1>








HEAD

For tagging the HEAD of an HTML page.

>>> print HEAD(TITLE('<hello>', XML('<b>world</b>')))
<head><title>&lt;hello&gt;<b>world</b></title></head>








HTML

This helper is a little different. In addition to making the <html>
tags, it prepends the tag with a doctype string.

>>> print HTML(BODY('<hello>', XML('<b>world</b>')))
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html><body>&lt;hello&gt;<b>world</b></body></html>





The HTML helper also takes some additional optional arguments that have
the following default:

HTML(..., lang='en', doctype='transitional')





where doctype can be ‘strict’, ‘transitional’, ‘frameset’, ‘html5’, or a
full doctype string.




I

This helper makes its contents italic.

>>> print I('<hello>', XML('<b>world</b>'), _class='test', _id=0)
<i id="0" class="test">&lt;hello&gt;<b>world</b></i>








IMG

It can be used to embed images into HTML:

>>> print IMG(_src='http://example.com/image.png', _alt='test')
 ![](http://example.com/image.ong){ alt="rest" }





Here is a combination of A, IMG, and URL helpers for including a static
image with a link:

>>> print A(IMG(_src=URL('static', 'logo.png'), _alt="My Logo"),
...   _href=URL('default', 'index'))
...
<a href="/myapp/default/index">
   ![](/myapp/static/logo.png){ alt="My Logo" }
</a>








INPUT

Creates an <input.../> tag. An input tag may not contain other tags,
and is closed by /> instead of >. The input tag has an optional
attribute _type that can be set to “text” (the default), “submit”,
“checkbox”, or “radio”.

>>> print INPUT(_name='test', _value='a')
<input value="a" name="test" />





It also takes an optional special argument called “value”, distinct from
“_value“. The latter sets the default value for the input field; the
former sets its current value. For an input of type”text”, the former
overrides the latter:

>>> print INPUT(_name='test', _value='a', value='b')
<input value="b" name="test" />





For radio buttons, INPUT selectively sets the “checked” attribute:

>>> for v in ['a', 'b', 'c']:
...     print INPUT(_type='radio', _name='test', _value=v, value='b'), v
...
<input value="a" type="radio" name="test" /> a
<input value="b" type="radio" checked="checked" name="test" /> b
<input value="c" type="radio" name="test" /> c





and similarly for checkboxes:

>>> print INPUT(_type='checkbox', _name='test', _value='a', value=True)
<input value="a" type="checkbox" checked="checked" name="test" />
>>> print INPUT(_type='checkbox', _name='test', _value='a', value=False)
<input value="a" type="checkbox" name="test" />








LABEL

It is used to create a LABEL tag for an INPUT field.

>>> print LABEL('<hello>', XML('<b>world</b>'), _class='test', _id=0)
<label id="0" class="test">&lt;hello&gt;<b>world</b></label>








LI

It makes a list item and should be contained in a UL or OL tag.

>>> print LI('<hello>', XML('<b>world</b>'), _class='test', _id=0)
<li id="0" class="test">&lt;hello&gt;<b>world</b></li>








OL

It stands for Ordered List. The list should contain LI tags. OL
arguments that are not LI objects are automatically enclosed in
<li>...</li> tags.

>>> print OL('<hello>', XML('<b>world</b>'), _class='test', _id=0)
<ol id="0" class="test"><li>&lt;hello&gt;</li><li><b>world</b></li></ol>








OPTION

This should only be used as part of a SELECT/OPTION combination.

>>> print OPTION('<hello>', XML('<b>world</b>'), _value='a')
<option value="a">&lt;hello&gt;<b>world</b></option>





As in the case of INPUT, py4web make a distinction between “_value”
(the value of the OPTION), and “value” (the current value of the
enclosing select). If they are equal, the option is “selected”.

>>> print SELECT('a', 'b', value='b'):
<select>
<option value="a">a</option>
<option value="b" selected="selected">b</option>
</select>








P

This is for tagging a paragraph.

>>> print P('<hello>', XML('<b>world</b>'), _class='test', _id=0)
<p id="0" class="test">&lt;hello&gt;<b>world</b></p>








PRE

Generates a <pre>...</pre> tag for displaying pre-formatted text.
The CODE helper is generally preferable for code listings.

>>> print PRE('<hello>', XML('<b>world</b>'), _class='test', _id=0)
<pre id="0" class="test">&lt;hello&gt;<b>world</b></pre>








SCRIPT

This is include or link a script, such as JavaScript. The content
between the tags is rendered as an HTML comment, for the benefit of
really old browsers.

>>> print SCRIPT('alert("hello world");', _type='text/javascript')
<script type="text/javascript"><!--
alert("hello world");
//--></script>








SELECT

Makes a <select>...</select> tag. This is used with the OPTION
helper. Those SELECT arguments that are not OPTION objects are
automatically converted to options.

>>> print SELECT('<hello>', XML('<b>world</b>'), _class='test', _id=0)
<select id="0" class="test">
<option value="&lt;hello&gt;">&lt;hello&gt;</option>
<option value="&lt;b&gt;world&lt;/b&gt;"><b>world</b></option>
</select>








SPAN

Similar to DIV but used to tag inline (rather than block) content.

>>> print SPAN('<hello>', XML('<b>world</b>'), _class='test', _id=0)
<span id="0" class="test">&lt;hello&gt;<b>world</b></span>








STYLE

Similar to script, but used to either include or link CSS code. Here the
CSS is included:

>>> print STYLE(XML('body {color: white}'))
<style><!--
body { color: white }
//--></style>





and here it is linked:

>>> print STYLE(_src='style.css')
<style src="style.css"><!--
//--></style>








TABLE, TR, TD

These tags (along with the optional THEAD and TBODY helpers) are
used to build HTML tables.

>>> print TABLE(TR(TD('a'), TD('b')), TR(TD('c'), TD('d')))
<table><tr><td>a</td><td>b</td></tr><tr><td>c</td><td>d</td></tr></table>





TR expects TD content; arguments that are not TD objects are
converted automatically.

>>> print TABLE(TR('a', 'b'), TR('c', 'd'))
<table><tr><td>a</td><td>b</td></tr><tr><td>c</td><td>d</td></tr></table>





It is easy to convert a Python array into an HTML table using Python’s
* function arguments notation, which maps list elements to
positional function arguments.

Here, we will do it line by line:

>>> table = [['a', 'b'], ['c', 'd']]
>>> print TABLE(TR(*table[0]), TR(*table[1]))
<table><tr><td>a</td><td>b</td></tr><tr><td>c</td><td>d</td></tr></table>





Here we do all lines at once:

>>> table = [['a', 'b'], ['c', 'd']]
>>> print TABLE(*[TR(*rows) for rows in table])
<table><tr><td>a</td><td>b</td></tr><tr><td>c</td><td>d</td></tr></table>








TBODY

This is used to tag rows contained in the table body, as opposed to
header or footer rows. It is optional.

>>> print TBODY(TR('<hello>'), _class='test', _id=0)
<tbody id="0" class="test"><tr><td>&lt;hello&gt;</td></tr></tbody>








TEXTAREA

This helper makes a <textarea>...</textarea> tag.

>>> print TEXTAREA('<hello>', XML('<b>world</b>'), _class='test')
<textarea class="test" cols="40" rows="10">&lt;hello&gt;<b>world</b></textarea>





The only caveat is that its optional “value” overrides its content
(inner HTML)

>>> print TEXTAREA(value="<hello world>", _class="test")
<textarea class="test" cols="40" rows="10">&lt;hello world&gt;</textarea>








TH

This is used instead of TD in table headers.

>>> print TH('<hello>', XML('<b>world</b>'), _class='test', _id=0)
<th id="0" class="test">&lt;hello&gt;<b>world</b></th>








THEAD

This is used to tag table header rows.

>>> print THEAD(TR(TH('<hello>')), _class='test', _id=0)
<thead id="0" class="test"><tr><th>&lt;hello&gt;</th></tr></thead>








TITLE

This is used to tag the title of a page in an HTML header.

>>> print TITLE('<hello>', XML('<b>world</b>'))
<title>&lt;hello&gt;<b>world</b></title>








TR

Tags a table row. It should be rendered inside a table and contain
<td>...</td> tags. TR arguments that are not TD objects will
be automatically converted.

>>> print TR('<hello>', XML('<b>world</b>'), _class='test', _id=0)
<tr id="0" class="test"><td>&lt;hello&gt;</td><td><b>world</b></td></tr>








TT

Tags text as typewriter (monospaced) text.

>>> print TT('<hello>', XML('<b>world</b>'), _class='test', _id=0)
<tt id="0" class="test">&lt;hello&gt;<b>world</b></tt>








UL

Signifies an Unordered List and should contain LI items. If its
content is not tagged as LI, UL does it automatically.

>>> print UL('<hello>', XML('<b>world</b>'), _class='test', _id=0)
<ul id="0" class="test"><li>&lt;hello&gt;</li><li><b>world</b></li></ul>








URL

The URL helper is documented in Chapter 4 URL ../04






Custom helpers


TAG

Sometimes you need to generate custom XML tags. py4web provides TAG,
a universal tag generator.

[[=TAG.name('a', 'b', _c='d')]]





generates the following XML

<name c="d">ab</name>





Arguments “a”, “b”, and “d” are automatically escaped; use the XML
helper to suppress this behavior. Using TAG you can generate
HTML/XML tags not already provided by the API. TAGs can be nested, and
are serialized with str(). An equivalent syntax is:

[[=TAG['name']('a', 'b', c='d')]]





If the TAG object is created with an empty name, it can be used to
concatenate multiple strings and HTML helpers together without inserting
them into a surrounding tag, but this use is deprecated. Use the CAT
helper instead.

Self-closing tags can be generated with the TAG helper. The tag name
must end with a “/”.

[[=TAG['link/'](_href='http://py4web.com')]]





generates the following XML:

<link ref="http://py4web.com"/>





Notice that TAG is an object, and TAG.name or TAG['name'] is
a function that returns a temporary helper class.




MENU

The MENU helper takes a list of lists or of tuples of the form of
response.menu and generates a tree-like structure using unordered
lists representing the menu. For example:

>>> print MENU([['One', False, 'link1'], ['Two', False, 'link2']])
<ul class="py4web-menu py4web-menu-vertical">
<li><a href="link1">One</a></li>
<li><a href="link2">Two</a></li>
</ul>






The first item in each list/tuple is the text to be displayed for the
given menu item.




The second item in each list/tuple is a boolean indicating whether that
particular menu item is active (i.e., the currently selected item). When
set to True, the MENU helper will add a “py4web-menu-active” class
to the <li> for that item (you can change the name of that class via
the “li_active” argument to MENU). Another way to specify the active
url is by directly passing it to MENU via its “active_url” argument.

The third item in each list/tuple can be an HTML helper (which could
include nested helpers), and the MENU helper will simply render that
helper rather than creating its own <a> tag.

Each menu item can have a fourth argument that is a nested submenu (and
so on recursively):

>>> print MENU([['One', False, 'link1', [['Two', False, 'link2']]]])
<ul class="py4web-menu py4web-menu-vertical">
<li class="py4web-menu-expand">
<a href="link1">One</a>
<ul class="py4web-menu-vertical">
<li><a href="link2">Two</a></li>
</ul>
</li>
</ul>





A menu item can also have an optional 5th element, which is a boolean.
When false, the menu item is ignored by the MENU helper.

The MENU helper takes the following optional arguments: -
_class: defaults to “py4web-menu py4web-menu-vertical” and sets the
class of the outer UL elements. - ul_class: defaults to
“py4web-menu-vertical” and sets the class of the inner UL elements. -
li_class: defaults to “py4web-menu-expand” and sets the class of the
inner LI elements. - li_first: allows to add a class to the first
list element. - li_last: allows to add a class to the last list
element.

MENU takes an optional argument mobile. When set to True
instead of building a recursive UL menu structure it returns a
SELECT dropdown with all the menu options and a onchange
attribute that redirects to the page corresponding to the selected
option. This is designed an an alternative menu representation that
increases usability on small mobile devices such as phones.

Normally the menu is used in a layout with the following syntax:

[[=MENU(response.menu, mobile=request.user_agent().is_mobile)]]





In this way a mobile device is automatically detected and the menu is
rendered accordingly.






BEAUTIFY

BEAUTIFY is used to build HTML representations of compound objects,
including lists, tuples and dictionaries:

[[=BEAUTIFY({"a": ["hello", XML("world")], "b": (1, 2)})]]





BEAUTIFY returns an XML-like object serializable to XML, with a nice
looking representation of its constructor argument. In this case, the
XML representation of:

{"a": ["hello", XML("world")], "b": (1, 2)}





will render as:

<table>
<tr><td>a</td><td>:</td><td>hello<br />world</td></tr>
<tr><td>b</td><td>:</td><td>1<br />2</td></tr>
</table>








Server-side DOM and parsing


elements

The DIV helper and all derived helpers provide the search methods
element and elements.

element returns the first child element matching a specified
condition (or None if no match).

elements returns a list of all matching children.

element and elements use the same syntax to specify the matching
condition, which allows for three possibilities that can be mixed and
matched: jQuery-like expressions, match by exact attribute value, match
using regular expressions.

Here is a simple example:

>>> a = DIV(DIV(DIV('a', _id='target', _class='abc')))
>>> d = a.elements('div#target')
>>> d[0][0] = 'changed'
>>> print a
<div><div><div id="target" class="abc">changed</div></div></div>





The un-named argument of elements is a string, which may contain:
the name of a tag, the id of a tag preceded by a pound symbol, the class
preceded by a dot, the explicit value of an attribute in square
brackets.

Here are 4 equivalent ways to search the previous tag by id:

d = a.elements('#target')
d = a.elements('div#target')
d = a.elements('div[id=target]')
d = a.elements('div', _id='target')





Here are 4 equivalent ways to search the previous tag by class:

d = a.elements('.abc')
d = a.elements('div.abc')
d = a.elements('div[class=abc]')
d = a.elements('div', _class='abc')





Any attribute can be used to locate an element (not just id and
class), including multiple attributes (the function element can take
multiple named arguments), but only the first matching element will be
returned.

Using the jQuery syntax “div#target” it is possible to specify multiple
search criteria separated by a comma:

a = DIV(SPAN('a', _id='t1'), DIV('b', _class='c2'))
d = a.elements('span#t1, div.c2')





or equivalently

a = DIV(SPAN('a', _id='t1'), DIV('b', _class='c2'))
d = a.elements('span#t1', 'div.c2')





If the value of an attribute is specified using a name argument, it can
be a string or a regular expression:

a = DIV(SPAN('a', _id='test123'), DIV('b', _class='c2'))
d = a.elements('span', _id=re.compile('test\d{3}')





A special named argument of the DIV (and derived) helpers is find.
It can be used to specify a search value or a search regular expression
in the text content of the tag. For example:

>>> a = DIV(SPAN('abcde'), DIV('fghij'))
>>> d = a.elements(find='bcd')
>>> print d[0]
<span>abcde</span>





or

>>> a = DIV(SPAN('abcde'), DIV('fghij'))
>>> d = a.elements(find=re.compile('fg\w{3}'))
>>> print d[0]
<div>fghij</div>








components

Here’s an example of listing all elements in an html string:

>>> html = TAG('<a>xxx</a><b>yyy</b>')
>>> for item in html.components:
...     print item
...
<a>xxx</a>
<b>yyy</b>








parent and siblings

parent returns the parent of the current element.

>>> a = DIV(SPAN('a'), DIV('b'))
>>> s = a.element('span')
>>> d = s.parent
>>> d['_class']='abc'
>>> print a
<div class="abc"><span>a</span><div>b</div></div>
>>> for e in s.siblings(): print e
<div>b</div>








Replacing elements

Elements that are matched can also be replaced or removed by specifying
the replace argument. Notice that a list of the original matching
elements is still returned as usual.

>>> a = DIV(SPAN('x'), DIV(SPAN('y'))
>>> b = a.elements('span', replace=P('z')
>>> print a
<div><p>z</p><div><p>z</p></div>





replace can be a callable. In this case it will be passed the
original element and it is expected to return the replacement element:

>>> a = DIV(SPAN('x'), DIV(SPAN('y'))
>>> b = a.elements('span', replace=lambda t: P(t[0])
>>> print a
<div><p>x</p><div><p>y</p></div>





If replace=None, matching elements will be removed completely.

>>> a = DIV(SPAN('x'), DIV(SPAN('y'))
>>> b = a.elements('span', replace=None)
>>> print a
<div></div>








flatten

The flatten method recursively serializes the content of the children of
a given element into regular text (without tags):

>>> a = DIV(SPAN('this', DIV('is', B('a'))), SPAN('test'))
>>> print a.flatten()
thisisatest





Flatten can be passed an optional argument, render, i.e. a function
that renders/flattens the content using a different protocol. Here is an
example to serialize some tags into Markmin wiki syntax:

>>> a = DIV(H1('title'), P('example of a ', A('link', _href='#test')))
>>> from gluon.html import markmin_serializer
>>> print a.flatten(render=markmin_serializer)
# titles

example of *a link *





At the time of writing we provide markmin_serializer and
markdown_serializer.




Parsing

The TAG object is also an XML/HTML parser. It can read text and convert
into a tree structure of helpers. This allows manipulation using the API
above:

>>> html = '<h1>Title</h1><p>this is a <span>test</span></p>'
>>> parsed_html = TAG(html)
>>> parsed_html.element('span')[0]='TEST'
>>> print parsed_html
<h1>Title</h1><p>this is a <span>TEST</span></p>










Page layout

Views can extend and include other views in a tree-like structure.

For example, we can think of a view “index.html” that extends
“layout.html” and includes “body.html”. At the same time, “layout.html”
may include “header.html” and “footer.html”.

The root of the tree is what we call a layout view. Just like any other
HTML template file, you can edit it using the py4web administrative
interface. The file name “layout.html” is just a convention.

Here is a minimalist page that extends the “layout.html” view and
includes the “page.html” view:

[[extend 'layout.html']]
<h1>Hello World</h1>
[[include 'page.html']]





The extended layout file must contain an [[include]] directive,
something like:

<html>
  <head>
    <title>Page Title</title>
  </head>
  <body>
    [[include]]
  </body>
</html>





When the view is called, the extended (layout) view is loaded, and the
calling view replaces the [[include]] directive inside the layout.
Processing continues recursively until all extend and include
directives have been processed. The resulting template is then
translated into Python code. Note, when an application is bytecode
compiled, it is this Python code that is compiled, not the original view
files themselves. So, the bytecode compiled version of a given view is a
single .pyc file that includes the Python code not just for the original
view file, but for its entire tree of extended and included views.


extend, include, block and super are special template
directives, not Python commands.




Any content or code that precedes the [[extend ...]] directive will
be inserted (and therefore executed) before the beginning of the
extended view’s content/code. Although this is not typically used to
insert actual HTML content before the extended view’s content, it can be
useful as a means to define variables or functions that you want to make
available to the extended view. For example, consider a view
“index.html”:

[[sidebar_enabled=True]]
[[extend 'layout.html']]
<h1>Home Page</h1>





and an excerpt from “layout.html”:

[[if sidebar_enabled:]]
    <div id="sidebar">
        Sidebar Content
    </div>
[[pass]]





Because the sidebar_enabled assignment in “index.html” comes before
the extend, that line gets inserted before the beginning of
“layout.html”, making sidebar_enabled available anywhere within the
“layout.html” code (a somewhat more sophisticated version of this is
used in the welcome app).

It is also worth pointing out that the variables returned by the
controller function are available not only in the function’s main view,
but in all of its extended and included views as well.

The argument of an extend or include (i.e., the extended or
included view name) can be a Python variable (though not a Python
expression). However, this imposes a limitation – views that use
variables in extend or include statements cannot be bytecode
compiled. As noted above, bytecode-compiled views include the entire
tree of extended and included views, so the specific extended and
included views must be known at compile time, which is not possible if
the view names are variables (whose values are not determined until run
time). Because bytecode compiling views can provide a significant speed
boost, using variables in extend and include should generally be
avoided if possible.

In some cases, an alternative to using a variable in an include is
simply to place regular [[include ...]] directives inside an
if...else block.

[[if some_condition:]]
[[include 'this_view.html']]
[[else:]]
[[include 'that_view.html']]
[[pass]]





The above code does not present any problem for bytecode compilation
because no variables are involved. Note, however, that the bytecode
compiled view will actually include the Python code for both
“this_view.html” and “that_view.html”, though only the code for one of
those views will be executed, depending on the value of
some_condition.

Keep in mind, this only works for include – you cannot place
[[extend ...]] directives inside if...else blocks.

Layouts are used to encapsulate page commonality (headers, footers,
menus), and though they are not mandatory, they will make your
application easier to write and maintain. In particular, we suggest
writing layouts that take advantage of the following variables that can
be set in the controller. Using these well known variables will help
make your layouts interchangeable:

response.title
response.subtitle
response.meta.author
response.meta.keywords
response.meta.description
response.flash
response.menu
response.files





Except for menu and files, these are all strings and their
meaning should be obvious.

response.menu menu is a list of 3-tuples or 4-tuples. The three
elements are: the link name, a boolean representing whether the link is
active (is the current link), and the URL of the linked page. For
example:

response.menu = [('Google', False, 'http://www.google.com', []),
                 ('Index',  True,  URL('index'), [])]





The fourth tuple element is an optional sub-menu.

response.files is a list of CSS and JS files that are needed by your
page.

We also recommend that you use:

[[include 'py4web_ajax.html']]





in the HTML head, since this will include the jQuery libraries and
define some backward-compatible JavaScript functions for special effects
and Ajax. “py4web_ajax.html” includes the response.meta tags in the
view, jQuery base, the calendar datepicker, and all required CSS and JS
response.files.


Default page layout

The “views/layout.html” that ships with the py4web scaffolding
application welcome (stripped down of some optional parts) is quite
complex but it has the following structure:

<!DOCTYPE html>
<head>
  <meta charset="utf-8" />
  <title>[[=response.title or request.application]]</title>
  ...
  <script src="[[=URL('static', 'js/modernizr.custom.js')]]"></script>

  [[
  response.files.append(URL('static', 'css/py4web.css'))
  response.files.append(URL('static', 'css/bootstrap.min.css'))
  response.files.append(URL('static', 'css/bootstrap-responsive.min.css'))
  response.files.append(URL('static', 'css/py4web_bootstrap.css'))
  ]]

  [[include 'py4web_ajax.html']]

  [[
  # using sidebars need to know what sidebar you want to use
  left_sidebar_enabled = globals().get('left_sidebar_enabled', False)
  right_sidebar_enabled = globals().get('right_sidebar_enabled', False)
  middle_columns = {0:'span12', 1:'span9', 2:'span6'}[
    (left_sidebar_enabled and 1 or 0)+(right_sidebar_enabled and 1 or 0)]
  ]]

  [[block head]][[end]]
</head>

<body>
  <!-- Navbar ================================================== -->
  <div class="navbar navbar-inverse navbar-fixed-top">
    <div class="flash">[[=response.flash or '']]</div>
    <div class="navbar-inner">
      <div class="container">
        [[=response.logo or '']]
        <ul id="navbar" class="nav pull-right">
          [[='auth' in globals() and auth.navbar(mode="dropdown") or '']]
        </ul>
        <div class="nav-collapse">
          [[if response.menu:]]
          [[=MENU(response.menu)]]
          [[pass]]
        </div><!--/.nav-collapse -->
      </div>
    </div>
  </div><!--/top navbar -->

  <div class="container">
    <!-- Masthead ================================================== -->
    <header class="mastheader row" id="header">
        <div class="span12">
            <div class="page-header">
                <h1>
                    [[=response.title or request.application]]
                    <small>[[=response.subtitle or '']]</small>
                </h1>
            </div>
        </div>
    </header>

    <section id="main" class="main row">
        [[if left_sidebar_enabled:]]
        <div class="span3 left-sidebar">
            [[block left_sidebar]]
            <h3>Left Sidebar</h3>
            <p></p>
            [[end]]
        </div>
        [[pass]]

        <div class="[[=middle_columns]]">
            [[block center]]
            [[include]]
            [[end]]
        </div>

        [[if right_sidebar_enabled:]]
        <div class="span3">
            [[block right_sidebar]]
            <h3>Right Sidebar</h3>
            <p></p>
            [[end]]
        </div>
        [[pass]]
    </section><!--/main-->

    <!-- Footer ================================================== -->
    <div class="row">
        <footer class="footer span12" id="footer">
            <div class="footer-content">
                [[block footer]] <!-- this is default footer -->
                ...
                [[end]]
            </div>
        </footer>
    </div>

  </div> <!-- /container -->

  <!-- The javascript =============================================
       (Placed at the end of the document so the pages load faster) -->
  <script src="[[=URL('static', 'js/bootstrap.min.js')]]"></script>
  <script src="[[=URL('static', 'js/py4web_bootstrap.js')]]"></script>
  [[if response.google_analytics_id:]]
    <script src="[[=URL('static', 'js/analytics.js')]]"></script>
    <script type="text/javascript">
    analytics.initialize({
      'Google Analytics':{trackingId:'[[=response.google_analytics_id]]'}
    });</script>
  [[pass]]
</body>
</html>





There are a few features of this default layout that make it very easy
to use and customize:


	It is written in HTML5 and uses the “modernizr” library for backward
compatibility. The actual layout includes some extra conditional
statements required by IE and they are omitted for brevity.


	It displays both response.title and response.subtitle which
can be set in a model or a controller. If they are not set, it adopts
the application name as title.


	It includes the py4web_ajax.html file in the header which
generated all the link and script import statements.


	It uses a modified version of Twitter Bootstrap for flexible layouts
which works on mobile devices and re-arranges columns to fit small
screens.


	It uses “analytics.js” to connect to Google Analytics.


	The [[=auth.navbar(...)]] displays a welcome to the current user
and links to the auth functions like login, logout, register, change
password, etc. depending on context. auth.navbar is a helper
factory and its output can be manipulated as any other helper. It is
placed in an expression to check for auth definition, the expression
evaluates to ’’ in case auth is undefined.


	The [[=MENU(response.menu)]] displays the menu structure as
<ul>...</ul>.


	[[include]] is replaced by the content of the extending view when
the page is rendered.


	By default it uses a conditional three column (the left and right
sidebars can be turned off by the extending views)


	It uses the following classes: page-header, main, footer.


	It contains the following blocks: head, left_sidebar, center,
right_sidebar, footer.




In views, you can turn on and customize sidebars as follows:

[[left_sidebar_enabled=True]]
[[extend 'layout.html']]

This text goes in center

[[block left_sidebar]]
This text goes in sidebar
[[end]]








Customizing the default layout

Customizing the default layout without editing is easy because the
welcome application is based on Twitter Bootstrap which is well
documented and supports themes. In py4web four static files which are
relevant to style:


	“css/py4web.css” contains py4web specific styles


	“css/bootstrap.min.css” contains the Twitter Bootstrap CSS style


	“css/py4web_bootstrap.css” which overrides some Bootstrap styles to
conform to py4web needs.


	“js/bootstrap.min.js” which includes the libraries for menu effects,
modals, panels.




To change colors and background images, try append the following code to
layout.html header:

<style>
body { background: url('images/background.png') repeat-x #3A3A3A; }
a { color: #349C01; }
.page-header h1 { color: #349C01; }
.page-header h2 { color: white; font-style: italic; font-size: 14px;}
.statusbar { background: #333333; border-bottom: 5px #349C01 solid; }
.statusbar a { color: white; }
.footer { border-top: 5px #349C01 solid; }
</style>





Of course you can also completely replace the “layout.html” and
“py4web.css” files with your own.




Mobile development

Although the default layout.html is designed to be mobile-friendly, one
may sometimes need to use different views when a page is visited by a
mobile device.

To make developing for desktop and mobile devices easier, py4web
includes the @mobilize decorator. This decorator is applied to
actions that should have a normal view and a mobile view. This is
demonstrated here:

from gluon.contrib.user_agent_parser import mobilize
@mobilize
def index():
    return dict()





Notice that the decorator must be imported before using it in a
controller. When the “index” function is called from a regular browser
(desktop computer), py4web will render the returned dictionary using the
view “[controller]/index.html”. However, when it is called by a mobile
device, the dictionary will be rendered by
“[controller]/index.mobile.html”. Notice that mobile views have the
“mobile.html” extension.

Alternatively you can apply the following logic to make all views mobile
friendly:

if request.user_agent().is_mobile:
    response.view.replace('.html', '.mobile.html')





The task of creating the “*.mobile.html” views is left to the developer
but we strongly suggest using the “jQuery Mobile” plugin which makes the
task very easy.






Functions in views

Consider this “layout.html”:

<html>
  <body>
    [[include]]
    <div class="sidebar">
      [[if 'mysidebar' in globals():]][[mysidebar()]][[else:]]
        my default sidebar
      [[pass]]
    </div>
  </body>
</html>





and this extending view

[[def mysidebar():]]
my new sidebar!!!
[[return]]
[[extend 'layout.html']]
Hello World!!!





Notice the function is defined before the [[extend...]] statement –
this results in the function being created before the “layout.html” code
is executed, so the function can be called anywhere within
“layout.html”, even before the [[include]]. Also notice the function
is included in the extended view without the = prefix.

The code generates the following output:

<html>
  <body>
    Hello World!!!
    <div class="sidebar">
      my new sidebar!!!
    </div>
  </body>
</html>





Notice that the function is defined in HTML (although it could also
contain Python code) so that response.write is used to write its
content (the function does not return the content). This is why the
layout calls the view function using [[mysidebar()]] rather than
[[=mysidebar()]]. Functions defined in this way can take arguments.




Blocks in views

The main way to make a view more modular is by using
[[block ...]]s and this mechanism is an alternative to the
mechanism discussed in the previous section.

To understand how this works, consider apps based on the scaffolding app
welcome, which has a view layout.html. This view is extended by the view
default/index.html via [[extend 'layout.html']]. The contents of
layout.html predefine certain blocks with certain default content, and
these are therefore included into default/index.html.

You can override these default content blocks by enclosing your new
content inside the same block name. The location of the block in the
layout.html is not changed, but the contents is.

Here is a simplifed version. Imagine this is “layout.html”:

<html>
  <body>
    [[include]]
    <div class="sidebar">
      [[block mysidebar]]
        my default sidebar (this content to be replaced)
      [[end]]
    </div>
  </body>
</html>





and this is a simple extending view default/index.html:

[[extend 'layout.html']]
Hello World!!!
[[block mysidebar]]
my new sidebar!!!
[[end]]





It generates the following output, where the content is provided by the
over-riding block in the extending view, yet the enclosing DIV and class
comes from layout.html. This allows consistency across views:

<html>
  <body>
    Hello World!!!
    <div class="sidebar">
        my new sidebar!!!
    </div>
  </body>
</html>





The real layout.html defines a number of useful blocks, and you can
easily add more to match the layout your desire.

You can have many blocks, and if a block is present in the extended view
but not in the extending view, the content of the extended view is used.
Also, notice that unlike with functions, it is not necessary to define
blocks before the [[extend ...]] – even if defined after the
extend, they can be used to make substitutions anywhere in the
extended view.

Inside a block, you can use the expression [[super]] to include the
content of the parent. For example, if we replace the above extending
view with:

[[extend 'layout.html']]
Hello World!!!
[[block mysidebar]]
[[super]]
my new sidebar!!!
[[end]]





we get:

<html>
  <body>
    Hello World!!!
    <div class="sidebar">
        my default sidebar
        my new sidebar!
    </div>
  </body>
</html>











            

          

      

      

    
 

  


  

    
      
          
            
  
Internationalization


Pluralize

Pluralize is a Python library for Internationalization (i18n) and
Pluralization (p10n).

The library assumes a folder (for exaple “translations”) that contains
files like:

it.json
it-IT.json
fr.json
fr-FR.json
(etc)





Each file has the following structure, for example for Italian
(it.json):

{"dog": {"0": "no cane", "1": "un cane", "2": "{n} cani", "10": "tantissimi cani"}}





The top level keys are the expressions to be translated and the
associated value/dictionary maps a number to a translation. Different
translations correspond to different plural forms of the expression,

Here is another example for the word “bed” in Czech

{"bed": {"0": "no postel", "1": "postel", "2": "postele", "5": "postelí"}}





To translate and pluralize a string “dog” one simply warps the string in
the T operator as follows:

>>> from pluralize import Translator
>>> T = Translator('translations')
>>> dog = T("dog")
>>> print(dog)
dog
>>> T.select('it')
>>> print(dog)
un cane
>>> print(dog.format(n=0))
no cane
>>> print(dog.format(n=1))
un cane
>>> print(dog.format(n=5))
5 cani
>>> print(dog.format(n=20))
tantissimi cani





The string can contain multiple placeholders but the {n} placeholder is
special because the variable called “n” is used to determine the
pluralization by best match (max dict key <= n).

T(…) objects can be added together with each other and with string, like
regular strings.

T.select(s) can parse a string s following the HTTP accept language
format.




Update the translation files

Find all strings wrapped in T(…) in .py, .html, and .js files:

matches = T.find_matches('path/to/app/folder')





Add newly discovered entries in all supported languages

T.update_languages(matches)





Add a new supported language (for example german, “de”)

T.languages['de'] = {}





Make sure all languages contain the same origin expressions

known_expressions = set()
for language in T.languages.values():
    for expression in language:
        known_expressions.add(expression)
T.update_languages(known_expressions))





Finally save the changes:

T.save('translations')











            

          

      

      

    
 

  


  

    
      
          
            
  
Forms

WORK IN PROGRESS

Just know that py4web.utils.form.Form is a pretty much equivalent to
web2py’s SQLFORM.

The Form constructor accepts the following arguments:

Form(self,
     table,
     record=None,
     readonly=False,
     deletable=True,
     formstyle=FormStyleDefault,
     dbio=True,
     keep_values=False,
     form_name=False,
     hidden=None,
     before_validate=None):





Where:


	table: a DAL table or a list of fields (equivalent to old
SQLFORM.factory)


	record: a DAL record or record id


	readonly: set to True to make a readonly form


	deletable: set to False to disallow deletion of record


	formstyle: a function that renders the form using helpers
(FormStyleDefault)


	dbio: set to False to prevent any DB writes


	keep_values: if set to true, it remembers the values of the
previously submitted form


	form_name: the optional name of this form


	hidden: a dictionary of hidden fields that is added to the form


	before_validate: an optional validator.





Example

Here is a simple example of a custom form not using database access. We
declare an endpoint /form_example, which will be used both for the
GET and for the POST of the form:

from py4web import Session, redirect, URL
from py4web.utils.dbstore import DBStore
from py4web.utils.form import Form, FormStyleBulma

db = DAL('sqlite:memory')
session =  Session(storage=DBStore(db))

@action('form_example', method=['GET', 'POST'])
@action.uses('form_example.html', session)
def form_example():
    form = Form([
        Field('product_name'),
        Field('product_quantity', 'integer')],
        formstyle=FormStyleBulma)
    if form.accepted:
        # Do something with form.vars['product_name'] and form.vars['product_quantity']
        redirect(URL('index'))
    return dict(form=form)





The form can be displayed in the template simply using [[=form]].




Form validation

The validation of form input can be done in two ways. One can define
requires attributes of Field, or one can define explicitly a
validation function. To do the latter, we pass to validate a
function that takes the form and returns a dictionary, mapping field
names to errors. If the dictionary is non-empty, the errors will be
displayed to the user, and no database I/O will take place.

Here is an example:

from py4web import Field
from py4web.utils.form import Form, FormStyleBulma
from pydal.validators import IS_INT_IN_RANGE

def check_nonnegative_quantity(form):
    if not form.errors and form.vars['product_quantity'] % 2:
        form.errors['product_quantity'] = T('The product quantity must be even')

@action('form_example', method=['GET', 'POST'])
@action.uses('form_example.html', session)
def form_example():
    form = Form([
        Field('product_name'),
        Field('product_quantity', 'integer', requires=IS_INT_IN_RANGE(0,100))],
        validation=check_nonnegative_quantity,
        formstyle=FormStyleBulma)
    if form.accepted:
        # Do something with form.vars['product_name'] and form.vars['product_quantity']
        redirect(URL('index'))
    return dict(form=form)











            

          

      

      

    
 

  


  

    
      
          
            
  
Authentication and Access control

Warning: the API described in this chapter is new and subject to
changes. Make sure you keep your code up to date

py4web comes with a an object Auth and a system of plugins for user
authentication and access control. It has the same name as the
corresponding web2py one and serves the same purpose but the API and
internal design is very different.

To use it, first of all you need to import it, instantiate it, configure
it, and enable it.

from py4web.utils.auth import Auth
auth = Auth(session, db)
# (configure here)
auth.enable()





The import step is obvious. The second step does not perform any
operation other than telling the Auth object which session object to use
and which database to use. Auth data is stored in session['user']
and, if a user is logged in, the user id is stored in
session[‘user’][‘id’]. The db object is used to store persistent info
about the user in a table auth_user with the following fields:


	username


	email


	password


	first_name


	last_name


	sso_id (used for single sign on, see later)


	action_token (used to verify email, block users, and other tasks,
also see later).




If the auth_user table does not exist it is created.

The configuration step is optional and discussed later.

The auth.enable() step creates and exposes the following RESTful
APIs:


	{appname}/auth/api/register (POST)


	{appname}/auth/api/login (POST)


	{appname}/auth/api/request_reset_password (POST)


	{appname}/auth/api/reset_password (POST)


	{appname}/auth/api/verify_email (GET, POST)


	{appname}/auth/api/logout (GET, POST) (+)


	{appname}/auth/api/profile (GET, POST) (+)


	{appname}/auth/api/change_password (POST) (+)


	{appname}/auth/api/change_email (POST) (+)




Those marked with a (+) require a logged in user.


Auth UI

You can create your own web UI to login users using the above APIs but
py4web provides one as an example, implemented in the following files:


	_scaffold/templates/auth.html


	_scaffold/static/components/auth.js


	_scaffold/static/components/auth.html




The component files (js/html) define a Vue component <auth/> which
is used in the template file auth.html as follows:

[[extend "layout.html"]]
<div id="vue">
  <div class="columns">
    <div class="column is-half is-offset-one-quarter" style="border : 1px solid #e1e1e1; border-radius: 10px">
      <auth plugins="local,oauth2google,oauth2facebook"></auth>
    </div>
  </div>
</div>
[[block page_scripts]]
<script src="js/utils.js"></script>
<script src="components/auth.js"></script>
<script>utils.app().start();</script>
[[end]]





You can pretty much use this file un-modified. It extends the current
layout and embeds the <auth/> component into the page. It then uses
utils.app().start(); (py4web magic) to render the content of
<div id="vue">...</div> using Vue.js. components/auth.js also
automatically loads components/auth.html into the component
placeholder (more py4web magic). The component is responsible for
rendering the login/register/etc forms using reactive html and
GETing/POSTing data to the Auth service APIs.

If you need to change the style of the component you can edit
“components/auth.html” to suit your needs. It is mostly HTML with some
special Vue v-* tags.




Using Auth

There two ways to use the Auth object in an action:

@action('index')
@action.uses(auth)
def index():
    user = auth.get_user()
    return 'hello {first_name}'.format(**user) if user else 'not logged in'





With @action.uses(auth) we tell py4web that this action needs to
have information about the user, then try to parse the session for a
user session.

@action('index')
@action.uses(auth.user)
def index():
    user = auth.get_user()
    return 'hello {first_name}'.format(**user)'





Here @action.uses(auth.user) tells py4web that this action requires
a logged in user and should redirect to login if no user is logged in.




Auth Plugins

Plugins are defined in “py4web/utils/auth_plugins” and they have a
hierachical structure. Some are exclusive and some are not. For example,
default, LDAP, PAM, and SAML are exclusive (the developer has to pick
one). Default, Google, Facebook, and Twitter OAuth are not exclusive
(the developer can pick them all and the user gets to choose using the
UI).

The <auth/> components will automatically adapt to display login
forms as required by the installed plugins.

At this time we cannot guarantee that the following plugins work well.
They have been ported from web2py where they do work but testing is
still needed


PAM

Configuring PAM is the easiest:

from py4web.utils.auth_plugins.pam_plugin import PamPlugin
auth.register_plugin(PamPlugin())





This one like all plugins must be imported and registered. Once
registered the UI (components/auth) and the RESTful APIs know how to
handle it. The constructor of this plugins does not require any
arguments (where other plugins do).

The auth.register_plugin(...) must come before the
auth.enable() since it makes no sense to expose APIs before desired
plugins are mounted.




LDAP

from py4web.utils.auth_plugins.ldap_plugin import LDAPPlugin
LDAP_SETTING = {
    'mode': 'ad',
    'server': 'my.domain.controller',
    'base_dn': 'ou=Users,dc=domain,dc=com'
}
auth.register_plugin(LDAPPlugin(**LDAP_SETTINGS))








OAuth2 with Google (tested OK)

from py4web.utils.auth_plugins.oauth2google import OAuth2Google # TESTED
auth.register_plugin(OAuth2Google(
    client_id=CLIENT_ID,
    client_secret=CLIENT_SECRET,
    callback_url='auth/plugin/oauth2google/callback'))





The client id and client secret must be provided by Google.




OAuth2 with Facebook (tested OK)

from py4web.utils.auth_plugins.oauth2facebook import OAuth2Facebook # UNTESTED
auth.register_plugin(OAuth2Facebook(
    client_id=CLIENT_ID,
    client_secret=CLIENT_SECRET,
    callback_url='auth/plugin/oauth2google/callback'))





The client id and client secret must be provided by Facebook.






Tags and Permissions

Py4web does not have the concept of groups as web2py does. Experience
showed that while that mechanism is powerful it suffers from two
problems: it is overkill for most apps, and it is not flexible enough
for very complex apps. Py4web provides a general purpose tagging
mechanism that allows the developer to tag any record of any table,
check for the existence of tags, as well as checking for records
containing a tag. Group membership can be thought of a type of tag that
we apply to users. Permissions can also be tags. Developer are free to
create their own logic on top of the tagging system.

To use the tagging system you need to create an object to tag a table:

groups = Tags(db.auth_user)





Then you can add one or more tags to records of the table as well as
remove existing tags:

groups.add(user.id, 'manager')
groups.add(user.id, ['dancer', 'teacher'])
groups.remove(user.id, 'dancer')





Here the use case is group based access control where the developer
first checks if a user is a member of the 'manager' group, if the
user is not a manager (or no one is logged in) py4web redirects to the
'not authorized url'. If the user is in the correct group then
py4web displays ‘hello manager’:

@action('index')
@action.uses(auth.user)
def index():
    if not 'manager' in groups.get(auth.get_user()['id']):
        redirect(URL('not_authorized'))
    return 'hello manager'





Here the developer queries the db for all records having the desired
tag(s):

@action('find_by_tag/{group_name}')
@action.uses(db)
def find(group_name):
    users = db(groups.find([group_name])).select(orderby=db.auth_user.first_name | db.auth_user.last_name)
    return {'users': users}





We leave it to you as an exercise to create a fixture has_membership
to enable the following syntax:

@action('index')
@action.uses(has_membership(groups, 'teacher'))
def index():
    return 'hello teacher'





Important: Tags are automatically hierarchical. For example, if
a user has a group tag ‘teacher/high-school/physics’, then all the
following seaches will return the user:


	groups.find('teacher/high-school/physics')


	groups.find('teacher/high-school')


	groups.find('teacher')




This means that slashes have a special meaning for tags. Slahes at the
beginning or the end of a tag are optional. All other chars are allowed
on equal footing.

Notice that one table can have multiple associated Tags objects. The
name groups here is completely arbitary but has a specific semantic
meaning. Different Tags objects are orthogonal to each other. The
limit to their use is your creativity.

For example you could create a table groups:

db.define_table('auth_group', Field('name'), Field('description'))





and to Tags:

groups = Tags(db.auth_user)
permissions = Tags(db.auth_groups)





Then create a zapper group, give it a permission, and make a user member
of the group:

zap_id = db.auth_group.insert(name='zapper', description='can zap database')
permissions.add(zap_id, 'zap database')
groups.add(user.id, 'zapper')





And you can check for a user permission via an explicit join:

@action('zap')
@action.uses(auth.user)
def zap():
    user = auth.get_user()
    permission = 'zap database'
    if db(permissions.find(permission))(
          db.auth_group.name.belongs(groups.get(user['id']))
          ).count():
        # zap db
        return 'database zapped'
    else:
        return 'you do not belong to any group with permission to zap db'





Notice here permissions.find(permission) generates a query for all
groups with the permission and we further filter those groups for those
the current user is member of. We count them and if we find any, then
the user has the permission.







            

          

      

      

    
 

  


  

    
      
          
            
  
Grid

py4web comes with a Grid object providing simple grid and CRUD
capabilities.


Key Features


	Click column heads for sorting - click again for DESC


	Pagination control


	Built in Search (can use search_queries OR search_form)


	Action Buttons - with or without text


	Full CRUD with Delete Confirmation


	Pre and Post Action (add your own buttons to each row)


	Grid dates in local format


	Default formatting by type plus user overrides







Basic Example

In this simple example we will make a grid over the company table.

controllers.py

from functools import reduce
from py4web.utils.grid import Grid
from py4web import action
from .common import db, session, auth

@action('companies', method=['POST', 'GET'])
@action('companies/<path:path>', method=['POST', 'GET'])
@action.uses(session, db, auth, 'grid.html')
def companies(path=None):
    grid = Grid(path,
                query=reduce(lambda a, b: (a & b), [db.company.id > 0]),
                orderby=[db.company.name],
                search_queries=[['Search by Name', lambda val: db.company.name.contains(val)]])

    return dict(grid=grid)





grid.html

[[extend 'layout.html']]
[[=grid.render()]]








Signature

class Grid:
    def __init__(
        self,
        path,
        query,
        search_form=None,
        search_queries=None,
        fields=None,
        show_id=False,
        orderby=None,
        left=None,
        headings=None,
        create=True,
        details=True,
        editable=True,
        deletable=True,
        pre_action_buttons=None,
        post_action_buttons=None,
        auto_process=True,
        rows_per_page=15,
        include_action_button_text=True,
        search_button_text="Filter",
        formstyle=FormStyleDefault,
        grid_class_style=GridClassStyle,
    ):






	path: the route of this request


	query: pydal query to be processed


	search_form: py4web FORM to be included as the search form. If
search_form is passed in then the developer is responsible for
applying the filter to the query passed in. This differs from
search_queries.


	search_queries: list of query lists to use to build the search form.
Ignored if search_form is used. Format is


	fields: list of fields to display on the list page, if blank, glean
tablename from first query and use all fields of that table


	show_id: show the record id field on list page - default = False


	orderby: pydal orderby field or list of fields


	left: if joining other tables, specify the pydal left expression here


	headings: list of headings to be used for list page - if not provided
use the field label


	details: URL to redirect to for displaying records - set to True to
automatically generate the URL - set to False to not display the
button


	create: URL to redirect to for creating records - set to True to
automatically generate the URL - set to False to not display the
button


	editable: URL to redirect to for editing records - set to True to
automatically generate the URL - set to False to not display the
button


	deletable: URL to redirect to for deleting records - set to True to
automatically generate the URL - set to False to not display the
button


	pre_action_buttons: list of action_button instances to include before
the standard action buttons


	post_action_buttons: list of action_button instances to include after
the standard action buttons


	auto_process: Boolean - whether or not the grid should be processed
immediately. If False, developer must call grid.process() once all
params are setup


	rows_per_page: number of rows to display per page. Default 15


	include_action_button_text: boolean telling the grid whether or not
you want text on action buttons within your grid


	search_button_text: text to appear on the submit button on your
search form


	formstyle: py4web Form formstyle used to style your form when
automatically building CRUD forms


	grid_class_style: GridClassStyle object used to override defaults for
styling your rendered grid. Allows you to specify classes or styles
to apply at certain points in the grid.







Searching / Filtering

There are two ways to build a search form.


	Provide a search_queries list


	Build your own custom search form




If you provide a search_queries list to grid, it will:


	build a search form. If more than one search query in the list, it
will also generate a dropdown to select which search field to search
agains


	gather filter values and filter the grid




However, if this doesn’t give you enough flexibility you can provide
your own search form and handle all the filtering (building the queries)
by yourself.




CRUD

The grid provides CRUD (create, read, update and delete) capabilities
utilizing py4web Form.

You can turn off CRUD features by setting
create/details/editable/deletable during grid instantiation.

Additionally, you can provide a separate URL to the
create/details/editable/deletable parameters to bypass the
auto-generated CRUD pages and handle the detail pages yourself.




Templates

Use the following to render your grid or CRUD forms in your templates.

Display the grid or a CRUD Form

[[=grid.render()]]





To allow for customizing CRUD form layout (like with web2py) you can use
the following

[[form = grid.render() ]]
[[form.custom["begin"] ]]
...
[[form.custom["submit"]
[[form.custom["end"]





When handling custom form layouts you need to know if you are displaying
the grid or a form. Use the following to decide

[[if 'action' in request.url_args and request.url_args['action'] in ['details', 'edit']:]]
    #  Display the custom form
    [[form = grid.render() ]]
    [[form.custom["begin"] ]]
    ...
    [[form.custom["submit"]
    [[form.custom["end"]
[[else:]]
    [[grid.render() ]]
[[pass]]








Customizing Style

You can provide your own formstyle or grid classes and style to grid.


	formstyle is the same as a Form formstyle, used to style the CRUD
forms.


	grid_class_style is a class that provides the classes and/or styles
used for certain portions of the grid.




The default GridClassStyle - based on no.css, primarily uses styles to
modify the layout of the grid

class GridClassStyle:

    """
    Default grid style
    Internal element names match default class name, other classes can be added
    Style use should be minimized since it cannot be overridden by CSS
    """

    classes = {
        "grid-wrapper": "grid-wrapper",
        "grid-header": "grid-header",
        "grid-new-button": "grid-new-button info",
        "grid-search": "grid-search",
        "grid-table-wrapper": "grid-table-wrapper",
        "grid-table": "grid-table",
        "grid-sorter-icon-up": "grid-sort-icon-up fas fa-sort-up",
        "grid-sorter-icon-down": "grid-sort-icon-down fas fa-sort-down",
        "grid-th-action-button": "grid-col-action-button",
        "grid-td-action-button": "grid-col-action-button",
        "grid-tr": "",
        "grid-th": "",
        "grid-td": "",
        "grid-details-button": "grid-details-button info",
        "grid-edit-button": "grid-edit-button info",
        "grid-delete-button": "grid-delete-button info",
        "grid-footer": "grid-footer",
        "grid-info": "grid-info",
        "grid-pagination": "grid-pagination",
        "grid-pagination-button": "grid-pagination-button info",
        "grid-pagination-button-current": "grid-pagination-button-current default",
        "grid-cell-type-string": "grid-cell-type-string",
        "grid-cell-type-text": "grid-cell-type-text",
        "grid-cell-type-boolean": "grid-cell-type-boolean",
        "grid-cell-type-float": "grid-cell-type-float",
        "grid-cell-type-int": "grid-cell-type-int",
        "grid-cell-type-date": "grid-cell-type-date",
        "grid-cell-type-time": "grid-cell-type-time",
        "grid-cell-type-datetime": "grid-cell-type-datetime",
        "grid-cell-type-upload": "grid-cell-type-upload",
        "grid-cell-type-list": "grid-cell-type-list",
        # specific for custom form
        "search_form": "search-form",
        "search_form_table": "search-form-table",
        "search_form_tr": "search-form-tr",
        "search_form_td": "search-form-td",
    }

    styles = {
        "grid-wrapper": "",
        "grid-header": "display: table; width: 100%",
        "grid-new-button": "display: table-cell;",
        "grid-search": "display: table-cell; float:right",
        "grid-table-wrapper": "overflow-x: auto; width:100%",
        "grid-table": "",
        "grid-sorter-icon-up": "",
        "grid-sorter-icon-down": "",
        "grid-th-action-button": "",
        "grid-td-action-button": "",
        "grid-tr": "",
        "grid-th": "white-space: nowrap; vertical-align: middle",
        "grid-td": "white-space: nowrap; vertical-align: middle",
        "grid-details-button": "margin-bottom: 0",
        "grid-edit-button": "margin-bottom: 0",
        "grid-delete-button": "margin-bottom: 0",
        "grid-footer": "display: table; width:100%",
        "grid-info": "display: table-cell;",
        "grid-pagination": "display: table-cell; text-align:right",
        "grid-pagination-button": "min-width: 20px",
        "grid-pagination-button-current": "min-width: 20px; pointer-events:none; opacity: 0.7",
        "grid-cell-type-string": "white-space: nowrap; vertical-align: middle; text-align: left; text-overflow: ellipsis; max-width: 200px",
        "grid-cell-type-text": "vertical-align: middle; text-align: left; text-overflow: ellipsis; max-width: 200px",
        "grid-cell-type-boolean": "white-space: nowrap; vertical-align: middle; text-align: center",
        "grid-cell-type-float": "white-space: nowrap; vertical-align: middle; text-align: right",
        "grid-cell-type-int": "white-space: nowrap; vertical-align: middle; text-align: right",
        "grid-cell-type-date": "white-space: nowrap; vertical-align: middle; text-align: right",
        "grid-cell-type-time": "white-space: nowrap; vertical-align: middle; text-align: right",
        "grid-cell-type-datetime": "white-space: nowrap; vertical-align: middle; text-align: right",
        "grid-cell-type-upload": "white-space: nowrap; vertical-align: middle; text-align: center",
        "grid-cell-type-list": "white-space: nowrap; vertical-align: middle; text-align: left",
        # specific for custom form
        "search_form": "",
        "search_form_table": "",
        "search_form_tr": "",
        "search_form_td": "",
    }

    @classmethod
    def get(cls, element):
        """returns a dict with _class and _style for the element name"""
        return {
            "_class": cls.classes.get(element),
            "_style": cls.styles.get(element),
        }





GridClassStyleBulma - bulma implementation

class GridClassStyleBulma(GridClassStyle):
    classes = {
        "grid-wrapper": "grid-wrapper field",
        "grid-header": "grid-header pb-2",
        "grid-new-button": "grid-new-button button",
        "grid-search": "grid-search is-pulled-right pb-2",
        "grid-table-wrapper": "grid-table-wrapper table_wrapper",
        "grid-table": "grid-table table is-bordered is-striped is-hoverable is-fullwidth",
        "grid-sorter-icon-up": "grid-sort-icon-up fas fa-sort-up is-pulled-right",
        "grid-sorter-icon-down": "grid-sort-icon-down fas fa-sort-down is-pulled-right",
        "grid-th-action-button": "grid-col-action-button is-narrow",
        "grid-td-action-button": "grid-col-action-button is-narrow",
        "grid-tr": "",
        "grid-th": "",
        "grid-td": "",
        "grid-details-button": "grid-details-button button is-small",
        "grid-edit-button": "grid-edit-button button is-small",
        "grid-delete-button": "grid-delete-button button is-small",
        "grid-footer": "grid-footer",
        "grid-info": "grid-info is-pulled-left",
        "grid-pagination": "grid-pagination is-pulled-right",
        "grid-pagination-button": "grid-pagination-button button is-small",
        "grid-pagination-button-current": "grid-pagination-button-current button is-primary is-small",
        "grid-cell-type-string": "grid-cell-type-string",
        "grid-cell-type-text": "grid-cell-type-text",
        "grid-cell-type-boolean": "grid-cell-type-boolean has-text-centered",
        "grid-cell-type-float": "grid-cell-type-float",
        "grid-cell-type-int": "grid-cell-type-int",
        "grid-cell-type-date": "grid-cell-type-date",
        "grid-cell-type-time": "grid-cell-type-time",
        "grid-cell-type-datetime": "grid-cell-type-datetime",
        "grid-cell-type-upload": "grid-cell-type-upload",
        "grid-cell-type-list": "grid-cell-type-list",
        # specific for custom form
        "search_form": "search-form is-pulled-right pb-2",
        "search_form_table": "search-form-table",
        "search_form_tr": "search-form-tr",
        "search_form_td": "search-form-td pr-1",
    }

    styles = {
        "grid-wrapper": "",
        "grid-header": "",
        "grid-new-button": "",
        "grid-search": "",
        "grid-table-wrapper": "",
        "grid-table": "",
        "grid-sorter-icon-up": "",
        "grid-sorter-icon-down": "",
        "grid-th-action-button": "",
        "grid-td-action-button": "",
        "grid-tr": "",
        "grid-th": "text-align: center; text-transform: uppercase;",
        "grid-td": "",
        "grid-details-button": "",
        "grid-edit-button": "",
        "grid-delete-button": "",
        "grid-footer": "padding-top: .5em;",
        "grid-info": "",
        "grid-pagination": "",
        "grid-pagination-button": "margin-left: .25em;",
        "grid-pagination-button-current": "margin-left: .25em;",
        "grid-cell-type-string": "",
        "grid-cell-type-text": "",
        "grid-cell-type-boolean": "",
        "grid-cell-type-float": "",
        "grid-cell-type-int": "",
        "grid-cell-type-date": "",
        "grid-cell-type-time": "",
        "grid-cell-type-datetime": "",
        "grid-cell-type-upload": "",
        "grid-cell-type-list": "",
        # specific for custom form
        "search_form": "",
        "search_form_table": "",
        "search_form_tr": "",
        "search_form_td": "",
    }





You can build your own class_style to be used with the css framework of
your choice.




Custom Action Buttons

As with web2py, you can add additional buttons to each row in your grid.
You do this by providing pre_action_buttons or post_action_buttons to
the Grid init method.


	pre_action_buttons - list of action_button instances to include
before the standard action buttons


	post_action_buttons - list of action_button instances to include
after the standard action buttons




You can build your own Action Button class to pass to pre/post action
buttons based on the template below (this is not provided with py4web)




Sample Action Button Class

def __init__(self,
             url,
             text,
             icon="fa-calendar",
             additional_classes=None,
             message=None,
             append_id=False):






	url: the page to navigate to when the button is clicked


	text: text to display on the button


	icon: the font-awesome icon to display before the text


	additional_classes: a space-separated list of classes to include on
the button element


	message: confirmation message to display if ‘confirmation’ class is
added to additional classes


	append_id: if True, add id_field_name=id_value to the url querystring
for the button







Reference Fields

When displaying fields in a PyDAL table, you sometimes want to display a
more descriptive field than a foreign key value. There are a couple of
ways to handle that with the py4web grid.

filter_out on PyDAL field definition - here is an example of a foreign
key field

Field('company', 'reference company',
      requires=IS_NULL_OR(IS_IN_DB(db, 'company.id',
                                   '%(name)s',
                                   zero='..')),
      filter_out=lambda x: x.name if x else ''),





This will display the company name in the grid instead of the company ID

The downfall of using this method is that sorting and filtering are
based on the company field in the employee table and not the name of the
company

left join and specify fields from joined table - specified on the left
parameter of Grid instantiation

db.company.on(db.employee.company == db.company.id)





You can specify a standard PyDAL left join, including a list of joins to
consider.

Now the company name field can be included in your fields list can be
clicked on and sorted.

Now you can also specify a query such as:

queries.append((db.employee.last_name.contains(search_text)) | (db.employee.first_name.contains(search_text)) | db.company.name.contains(search_text)))





This method allows you to sort and filter, but doesn’t allow you to
combine fields to be displayed together as the filter_out method would

You need to determine which method is best for your use case
understanding the different grids in the same application may need to
behave differently.







            

          

      

      

    
 

  


  

    
      
          
            

Index



 




            

          

      

      

    
 

  


  _images/dashboard_edit.png
o000 127.0.0.1:8000/_dashboard X +

. > A ® ‘@ 127.0.0.1:8000/_dashboard {}] v N @ ‘ =

v File: todo/__init__.py

Delete File Reload File Save File

1 import os

2 from py4web import action, request, DAL, Field, Session, Cache, user_in

3

4 # define session and cache objects

5 session = Session(secret='some secret')

6 cache = Cache(size=1000)

7

8 # define database and tables

9 db = DAL('sqlite://storage.db', folder=os.path.join(os.path.dirname(__file__), 'databases'))
10 db.define_table('todo', Field('info'))

11

12 # example index page using session, template and vue.js

13 @action('index") # the function below is exposed as a GET action

14 @action.uses('index.html") # we use the template index.html to render it
15 @action.uses(session) # action needs a session object (read/write cookies)
16 ~ def index():

17 session['counter'] = session.get('counter', @) + 1

18 session['user'] = {'id': 1} # store a user in session

19 return dict(session=session)

20

21 # example of GET/POST/DELETE RESTful APIs

22

23  @action('api') # a GET API function

24 @action.uses(session) # we load the session

25 @action.requires(user_in(session)) # then check we have a valid user in session
26 @action.uses(db) # all before starting a db connection

27 ~ def todo():
28 return dict(items=db(db.todo).select(orderby=~db.todo.id).as_list())

~0





_images/dashboard_error.png
0.1:8000/_dashboard/ticket/internal-error

S00

INTERNAL SERVER ERROR

[ cfd7a232-b0c1-4377-bfe3-96519325adcf )






_images/dashboard_login.png





_images/dashboard_main.png
o0 127.0.0.1:8000/_dashboard X +

&« C ® 127.0.0.1:8000/_dashboard e O N e =

» pydweb Dashboard

Fue — [Wethod [Filename JAction _[Time) _[Callss
GET

index
GET todo
POST todo
DELETE todo
GET index

GET uuid





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to py4web’s documentation!
        


        		
          What is py4web?
        


        		
          Installation and Startup
          
            		
              Supported platforms and prerequisites
            


            		
              Setup procedures
              
                		
                  Installing from binaries
                


                		
                  Hint: use a virtual environment (virtualenv)
                


                		
                  Installing from pip
                


                		
                  Installing from source (globally)
                


                		
                  Installing from source (locally)
                


              


            


            		
              Upgrading
            


            		
              First run
            


            		
              Command line options
              
                		
                  call command option
                


                		
                  run command option
                


                		
                  set_password command option
                


                		
                  setup command option
                


                		
                  shell command option
                


                		
                  version command option
                


              


            


            		
              Deployment on the cloud
              
                		
                  Deployment on GCloud (aka Google App Engine)
                


                		
                  Deployment on PythonAnywhere.com
                


              


            


          


        


        		
          Creating your first app
          
            		
              From scratch
            


            		
              Static web pages
            


            		
              Dynamic Web Pages
              
                		
                  On return values
                


                		
                  Routes
                


                		
                  The request object
                


                		
                  Templates
                


              


            


            		
              From _scaffold
            


            		
              App Watchdog
            


          


        


        		
          Dashboard
        


        		
          Fixtures
          
            		
              Important about Fixtures
            


            		
              Templates
            


            		
              Sessions
              
                		
                  Session in memcache
                


                		
                  Session in redis
                


                		
                  Session in database
                


                		
                  Session anywhere
                


              


            


            		
              Translator
            


            		
              The Flash fixture
            


            		
              The DAL fixture
            


            		
              Caveats about Fixtures
            


            		
              Custom fixtures
            


            		
              Auth and Auth.user
            


            		
              Caching and Memoize
            


            		
              Convenience Decorators
            


          


        


        		
          The database abstraction layer (DAL)
          
            		
              Dependencies
            


            		
              The DAL: A quick tour
            


            		
              Using the DAL “stand-alone”
            


            		
              DAL constructor
              
                		
                  DAL signature
                


                		
                  Connection strings (the uri parameter)
                


                		
                  Connection pooling
                


                		
                  Connection failures (attempts parameter)
                


                		
                  Lazy Tables
                


                		
                  Model-less applications
                


                		
                  Replicated databases
                


                		
                  Reserved keywords
                


                		
                  Database quoting and case settings
                


                		
                  Making a secure connection
                


                		
                  Other DAL constructor parameters
                


                		
                  Experiment with the py4web shell
                


              


            


            		
              Table constructor
              
                		
                  define_table signature
                


                		
                  id: Notes about the primary key
                


                		
                  plural and singular
                


                		
                  redefine
                


                		
                  format: Record representation
                


                		
                  rname: Real name
                


                		
                  primarykey: Support for legacy tables
                


                		
                  migrate, fake_migrate
                


                		
                  table_class
                


                		
                  sequence_name
                


                		
                  trigger_name
                


                		
                  polymodel
                


                		
                  on_define
                


                		
                  Lazy Tables, a major performance boost
                


                		
                  Adding attributes to fields and tables
                


              


            


            		
              Field constructor
              
                		
                  Field types
                


                		
                  Run-time field and table modification
                


              


            


            		
              Migrations
              
                		
                  Fixing broken migrations
                


                		
                  Migration control summary
                


              


            


            		
              insert
            


            		
              commit and rollback
            


            		
              Raw SQL
              
                		
                  Timing queries
                


                		
                  executesql
                


                		
                  _lastsql
                


              


            


            		
              drop
            


            		
              Indexes
            


            		
              Legacy databases and keyed tables
            


            		
              Distributed transaction
            


            		
              More on uploads
            


            		
              Query, Set, Rows
            


            		
              select
              
                		
                  Using an iterator-based select for lower memory use
                


                		
                  Rendering rows using represent
                


                		
                  Shortcuts
                


                		
                  Fetching a Row
                


                		
                  Recursive selects
                


                		
                  orderby, groupby, limitby, distinct, having, orderby_on_limitby, join, left, cache
                


                		
                  Logical operators
                


                		
                  count, isempty, delete, update
                


                		
                  Expressions
                


                		
                  case
                


                		
                  update_record
                


                		
                  Inserting and updating from a dictionary
                


                		
                  first and last
                


                		
                  as_dict and as_list
                


                		
                  Combining rows
                


                		
                  find, exclude, sort
                


              


            


            		
              Other methods
              
                		
                  update_or_insert
                


                		
                  validate_and_insert, validate_and_update
                


              


            


            		
              Computed fields
            


            		
              Virtual fields
              
                		
                  New style virtual fields (experimental)
                


                		
                  Old style virtual fields
                


              


            


            		
              One to many relation
              
                		
                  Inner joins
                


                		
                  Left outer join
                


                		
                  Grouping and counting
                


              


            


            		
              Many to many
            


            		
              Tagging records
            


            		
              list:<type> and contains
            


            		
              Other operators
              
                		
                  like, ilike, regexp, startswith, endswith, contains, upper, lower
                


                		
                  year, month, day, hour, minutes, seconds
                


                		
                  belongs
                


                		
                  sum, avg, min, max and len
                


                		
                  Substrings
                


                		
                  Default values with coalesce and coalesce_zero
                


              


            


            		
              Generating raw sql
            


            		
              Exporting and importing data
              
                		
                  CSV (one Table at a time)
                


                		
                  CSV (all tables at once)
                


                		
                  CSV and remote database synchronization
                


                		
                  HTML and XML (one Table at a time)
                


                		
                  Data representation
                


              


            


            		
              Caching selects
            


            		
              Self-Reference and aliases
            


            		
              Advanced features
              
                		
                  Table inheritance
                


                		
                  filter_in and filter_out
                


                		
                  callbacks on record insert, delete and update
                


                		
                  Record versioning
                


                		
                  Common fields and multi-tenancy
                


                		
                  Common filters
                


                		
                  Custom Field types
                


                		
                  Using DAL without define tables
                


                		
                  PostGIS, SpatiaLite, and MS Geo (experimental)
                


                		
                  Copy data from one db into another
                


                		
                  Note on new DAL and adapters
                


              


            


            		
              Gotchas
              
                		
                  SQLite
                


                		
                  MySQL
                


                		
                  Google SQL
                


                		
                  MSSQL (Microsoft SQL Server)
                


                		
                  Oracle
                


                		
                  Google NoSQL (Datastore)
                


              


            


          


        


        		
          The RESTAPI
          
            		
              RestAPI GET
            


          


        


        		
          YATL Template Language
          
            		
              Basic syntax
              
                		
                  for...in
                


                		
                  while
                


                		
                  if...elif...else
                


                		
                  try...except...else...finally
                


                		
                  def...return
                


              


            


          


        


        		
          YATL helpers
          
            		
              XML
            


            		
              Built-in helpers
              
                		
                  A
                


                		
                  BODY
                


                		
                  CAT
                


                		
                  CODE
                


                		
                  DIV
                


                		
                  EM
                


                		
                  FORM
                


                		
                  H1, H2, H3, H4, H5, H6
                


                		
                  HEAD
                


                		
                  HTML
                


                		
                  I
                


                		
                  IMG
                


                		
                  INPUT
                


                		
                  LABEL
                


                		
                  LI
                


                		
                  OL
                


                		
                  OPTION
                


                		
                  P
                


                		
                  PRE
                


                		
                  SCRIPT
                


                		
                  SELECT
                


                		
                  SPAN
                


                		
                  STYLE
                


                		
                  TABLE, TR, TD
                


                		
                  TBODY
                


                		
                  TEXTAREA
                


                		
                  TH
                


                		
                  THEAD
                


                		
                  TITLE
                


                		
                  TR
                


                		
                  TT
                


                		
                  UL
                


                		
                  URL
                


              


            


            		
              Custom helpers
              
                		
                  TAG
                


                		
                  MENU
                


              


            


            		
              BEAUTIFY
            


            		
              Server-side DOM and parsing
              
                		
                  elements
                


                		
                  components
                


                		
                  parent and siblings
                


                		
                  Replacing elements
                


                		
                  flatten
                


                		
                  Parsing
                


              


            


            		
              Page layout
              
                		
                  Default page layout
                


                		
                  Customizing the default layout
                


                		
                  Mobile development
                


              


            


            		
              Functions in views
            


            		
              Blocks in views
            


          


        


        		
          Internationalization
          
            		
              Pluralize
            


            		
              Update the translation files
            


          


        


        		
          Forms
          
            		
              Example
            


            		
              Form validation
            


          


        


        		
          Authentication and Access control
          
            		
              Auth UI
            


            		
              Using Auth
            


            		
              Auth Plugins
              
                		
                  PAM
                


                		
                  LDAP
                


                		
                  OAuth2 with Google (tested OK)
                


                		
                  OAuth2 with Facebook (tested OK)
                


              


            


            		
              Tags and Permissions
            


          


        


        		
          Grid
          
            		
              Key Features
            


            		
              Basic Example
            


            		
              Signature
            


            		
              Searching / Filtering
            


            		
              CRUD
            


            		
              Templates
            


            		
              Customizing Style
            


            		
              Custom Action Buttons
            


            		
              Sample Action Button Class
            


            		
              Reference Fields
            


          


        


      


    
  

_images/dashboard_restapi.png
000 127.0.0.1:8000/_dashboard X

< > C o ® 127.0.0.1:8000/_dashboard e O m o=
[ N } 127.0.0.1:8000/_dashboard/dbadmir X =+
&« c @ ® 127.0.0.1:8000/_dashboard/dbadmin?apy

0D
(i reme  real-ignity |

(id T descrpion

[id T superhero ] swperponer ] o

Job

Referenced By






_images/dashboard_ticket.png
127.0.0.1:8000/_dashboard X 127.0.0.1:8000/_dashboard/ticket/6 X 127.0.0.1:8000/_dashboard/ticket/

&« c ® ® 127.0.0.1:8000/_dashboard/ticket/625267d8-f4b1-4 - U %

Error Ticket: division by zero

id:
uuid:

app_name:
method:
path:
timestamp:
client_ip:
error:
snapshot:

5

625267d8-f4bl-467e-bce8-2e43807ba925

examples

GET

/examples/oops

2019-09-03 00:12:48

127.0.0.1

division by zero

timestamp: 2019-09-03T00:12:48.110126

python_version: 3.7.0b4 (v3.7.0b4:eb96c37699, May 2 2018, 04:13:13)
[Clang 6.0 (clang-600.0.57)]

platform_info: machine: | B!
node: I me
platform: I Darwin-18.6.0-x86_64-1386-64bit
processor: I i386
python_branch: I v3.7.0b4
python_build: I e v3.7.0b4:eb96c37699
e May 2 2018 04:13:13
python_compiler: I Clang 6.0 (clang-600.0.57)
python_implementation: I CPython
python_revision: I €b96c37699
python_version: I 3.7.0b4
murbrhen verceinn +1inlae B Y

X

¥

+
N @






_static/plus.png





_static/py4web_art5.png
PYAVEB





_static/file.png





_static/minus.png





